Identification of medically relevant yeasts can be time-consuming and inaccurate with current methods. We evaluated PCR-based detection of sequence polymorphisms in the internal transcribed spacer 2 (ITS2) region of the rRNA genes as a means of fungal identification. Clinical isolates (401), reference strains (6), and type strains (27), representing 34 species of yeasts were examined. The length of PCR-amplified ITS2 region DNA was determined with single-base precision in less than 30 min by using automated capillary electrophoresis. Unique, species-specific PCR products ranging from 237 to 429 bp were obtained from 92% of the clinical isolates. The remaining 8%, divided into groups with ITS2 regions which differed by <2 bp in mean length, all contained species-specific DNA sequences easily distinguishable by restriction enzyme analysis. These data, and the specificity of length polymorphisms for identifying yeasts, were confirmed by DNA sequence analysis of the ITS2 region from 93 isolates. Phenotypic and ITS2-based identification was concordant for 427 of 434 yeast isolates examined using sequence identity of >99%. Seven clinical isolates contained ITS2 sequences that did not agree with their phenotypic identification, and ITS2-based phylogenetic analyses indicate the possibility of new or clinically unusual species in the Rhodotorula and Candida genera. This work establishes an initial database, validated with over 400 clinical isolates, of ITS2 length and sequence polymorphisms for 34 species of yeasts. We conclude that size and restriction analysis of PCR-amplified ITS2 region DNA is a rapid and reliable method to identify clinically significant yeasts, including potentially new or emerging pathogenic species.
In a survey of template-primer preference of a mouse myeloma DNA alpha-polymerase, the fastest rate of DNA synthesis was with poly(dT) as template and (rA)24 as primer. Such a preference for poly(dT).oligo(rA) was not observed with other DNA polymerases of mouse origin. DNA synthesis in this system resulted in formation of oligo(dA) chains, not template-length poly(dA); thus, the average enzyme molecule bound to a poly(dT).(rA)24 complex and initiated a new oligo(dA) chain many times during the incubation. Binding experiments revealed that the alpha-polymerase had high affinity for poly(dT). Although the alpha-polymerase did not bind to poly(dl) and failed to replicate it inreactions with a base pair complementary primer, poly(dl) was replicated after a (dT) block had been grafted to its 3'-end and the oligo(rA) primer had been added. In similar experiments, the (dT) block was found to be much more effective than other 3'-terminal blocks in promoting replication of denatured calf thymus DNA. The results indicate that specific base sequences may regulate initiation of DNA syntehsis by this alpha-polymerase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.