The past two decades have witnessed the stagnation of the clock speed of microprocessors followed by the recent faltering of Moore’s law as nanofabrication technology approaches its unavoidable physical limit. Vigorous efforts from various research areas have been made to develop power-efficient and ultrafast computing machines in this post-Moore’s law era. With its unique capacity to integrate complex electro-optic circuits on a single chip, integrated photonics has revolutionized the interconnects and has shown its striking potential in optical computing. Here, we propose an electronic-photonic computing architecture for a wavelength division multiplexing-based electronic-photonic arithmetic logic unit, which disentangles the exponential relationship between power and clock rate, leading to an enhancement in computation speed and power efficiency as compared to the state-of-the-art transistors-based circuits. We experimentally demonstrate its practicality by implementing a 4-bit arithmetic logic unit consisting of 8 high-speed microdisk modulators and operating at 20 GHz. This approach paves the way to future power-saving and high-speed electronic-photonic computing circuits.
Photoluminescence (PL) properties of InN dots embedded in GaN were investigated. We observed a systematic blueshift in the emission energy as the average dot height was reduced. The widely size-tunable emission energy can be ascribed to the size quantization effect. Temperature-dependent PL measurements show that the emission peak energies of the dots are insensitive to temperature, as compared with that of bulk film, indicating the localization of carriers in the dots. A reduced quenching of the PL from the InN dots was also observed, implying superior emission properties for the embedded InN dot structures.
Ni-rich layered oxides are one of the most attractive cathode materials in high-energy-density lithium-ion batteries, their degradation mechanisms are still not completely elucidated. Herein, we report a strong dependence of degradation pathways on the long-range cationic disordering of Co-free Ni-rich Li 1À m -(Ni 0.94 Al 0.06 ) 1 + m O 2 (NA). Interestingly, a disordered layered phase with lattice mismatch can be easily formed in the near-surface region of NA particles with very low cation disorder (NA-LCD, m � 0.06) over electrochemical cycling, while the layered structure is basically maintained in the core of particles forming a "coreshell" structure. Such surface reconstruction triggers a rapid capacity decay during the first 100 cycles between 2.7 and 4.3 V at 1 C or 3 C. On the contrary, the local lattice distortions are gradually accumulated throughout the whole NA particles with higher degrees of cation disorder (NA-HCD, 0.06 � m � 0.15) that lead to a slow capacity decay upon cycling.
The catalyst-free growth of nanocrystals on various substrates at room temperature has been a long-standing goal in the development of material science. We report the growth of one-dimensional zinc nanocrystals on silicone oil surfaces by thermal evaporation method at room temperature (20 ± 2 °C). Uniform zinc nanorods with tunable size can be obtained. The typical length and width of the nanorods are 250–500 nm and 20–40 nm, respectively. The growth mechanism can be attributed to the effect of the liquid substrate and the preferential growth direction of the crystals. This result provides a novel and simple way to fabricate the precursors (zinc crystals) for preparation of Zn-based semiconductors and other metallic crystals on liquid substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.