Microsatellite (SSR) diversity at 28 loci comprising seven types of tandem dinucleotide repeated motifs was analyzed in 105 individual plants of wild emmer wheat, Triticum dicoccoides, from a microsite in Yehudiyya, northeast of the Sea of Galilee, Israel. The study area was less than 1000 m(2) and involved 12 paired plots distributed in a mosaic pattern. Each experiment involved very close (a few meters apart), but sharply divergent, microclimatic niches in the open park forest of Tabor oak: (1) sun, between trees, and (2) shade, under tree canopy. Significant microclimatic divergence characterized many loci displaying asymmetric and non-random distribution of repeat numbers. Niche-specific and niche-unique alleles and linkage disequilibria were found in the two sub-populations. Microsatellite diversity at both single- and two-locus levels is affected by microclimatic environment. The evidence reflects effects of ecological stresses and natural selection on SSR diversity, resulting presumably in adaptive structures.
This study investigated allele size constraints and clustering, and genetic effects on microsatellite (simple sequence repeat, SSR) diversity at 28 loci comprising seven types of tandem repeated dinucleotide motifs in a natural population of wild emmer wheat, Triticum dicoccoides, from a shade vs sun microsite in Yehudiyya, northeast of the Sea of Galilee, Israel. It was found that allele distribution at SSR loci is clustered and constrained with lower or higher boundary. This may imply that SSR have functional significance and natural constraints. Genetic factors, involving genome, chromosome, motif, and locus significantly affected SSR diversity. Genome B appeared to have a larger average repeat number (ARN), but lower variance in repeat number (s ARN 2 ), and smaller number of alleles per locus than genome A. SSRs with compound motifs showed larger ARN than those with perfect motifs. The effects of replication slippage and recombinational effects (eg, unequal crossing over) on SSR diversity varied with SSR motifs. Ecological stresses (sun vs shade) may affect mutational mechanisms, influencing the level of SSR diversity by both processes. Heredity (2003) 90, 150-156.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.