Abstract. Studies of distant galaxies have shown that ellipticals and large spirals (Schade et al. 1999, ApJ, 525, 31; Lilly et al. 1998, ApJ, 500, 75) were already in place 8 Gyr ago, leading to a very modest recent star formation (Brinchmann & Ellis 2000, ApJ, 536, L77) in intermediate mass galaxies (3−30 × 10 10 M ). This is challenged by a recent analysis (Heavens et al. 2004, Nature, 428, 625) of the fossil record of the stellar populations of ∼10 5 nearby galaxies, which shows that intermediate mass galaxies formed or assembled the bulk of their stars 4 to 8 Gyr ago. Here we present direct observational evidence supporting this findings from a long term, multi-wavelength study of 195 z > 0.4 intermediate mass galaxies, mostly selected from the Canada France Redshift Survey (CFRS). We show that recent and efficient star formation is revealed at IR wavelengths since ∼15% of intermediate mass galaxies at z > 0.4 are indeed luminous IR galaxies (LIRGs), a phenomenon far more common than in the local Universe. The star formation in LIRGs is sufficient in itself to produce 38% of the total stellar mass of intermediate mass galaxies and then to account for most of the reported stellar mass formation since z = 1. Observations of distant galaxies have also the potential to resolve their star formation and mass assembly histories. The high occurrence of LIRGs is easily understood only if they correspond to episodic peaks of star formation, during which galaxies are reddened through short IREs (infrared episodes). We estimate that each galaxy should experience 4 to 5 × (τ IRE /0.1 Gyr) −1IREs from z = 1 to z = 0.4, τ IRE being the characteristic timescale. An efficient and episodic star formation is further supported by the luminosity-metallicity relation of z ∼ 0.7 emission line galaxies, which we find to be on average metal deficient by a factor of ∼2 when compared to those of local spirals. We then examine how galaxy IREs can be related to the emergence at high redshift of the abundant population of galaxies with small size (but not with small mass), blue core and many irregularities. We show that recent merging and gas infall naturally explain both morphological changes and episodic star formation history in a hierarchical galaxy formation frame. We propose a simple scenario in which 75 ± 25% of intermediate mass spirals have recently experienced their last major merger event, leading to a drastic reshaping of their bulges and disks during the last 8 Gyr. It links in a simple manner distant and local galaxies, and gives account of the simultaneous decreases during that period, of the cosmic star formation density, of the merger rate, and of the number densities of LIRGs, compact and irregular galaxies, while the densities of ellipticals and large spirals are essentially unaffected. It predicts that 42, 22 and 36% of the IR (episodic) star formation density is related to major mergers, minor mergers and gas infall, respectively.
Using the multi-integral field spectrograph GIRAFFE at VLT, we have derived the K-band Tully-Fisher relation (TFR) at z ∼ 0.6 for a representative sample of 65 galaxies with emission lines (W 0 (OII) ≥ 15 Å). We confirm that the scatter in the z ∼ 0.6 TFR is caused by galaxies with anomalous kinematics, and find a positive and strong correlation between the complexity of the kinematics and the scatter that they contribute to the TFR. Considering only relaxed-rotating disks, the scatter, and possibly also the slope, of the TFR, do not appear to evolve with redshift. We detect an evolution of the K-band TFR zero point between z ∼ 0.6 and z = 0, which, if interpreted as an evolution of the K-band luminosity of rotating disks, would imply that a brightening of 0.66 ± 0.14 mag occurs between z ∼ 0.6 and z = 0. Any disagreement with the results of Flores et al. (2006, A&A, 455, 107) are attributed to both an improvement of the local TFR and the more detailed accurate measurement of the rotation velocities in the distant sample. Most of the uncertainty can be explained by the relatively coarse spatial-resolution of the kinematical data. Because most rotating disks at z ∼ 0.6 are unlikely to experience further merging events, one may assume that their rotational velocity, which is taken as a proxy of the total mass, does not evolve dramatically. If true, our result implies that rotating disks observed at z ∼ 0.6 are rapidly transforming their gas into stars, to be able to double their stellar masses and be observed on the TFR at z = 0. The rotating disks observed are indeed emission-line galaxies that are either starbursts or LIRGs, which implies that they are forming stars at a high rate. Thus, a significant fraction of the rotating disks are forming the bulk of their stars within 6 to 8 Gyr, in good agreement with former studies of the evolution of the mass-metallicity relationship.
Abstract.To determine the population membership of nearby stars we explore abundance results obtained for the light neutronrich elements 23 Na and 27 Al in a small sample of moderately metal-poor stars. Spectroscopic observations are limited to the solar neighbourhood so that gravities can be determined from H parallaxes, and the results are confronted with those for a separate sample of more metal-poor typical halo stars. Following earlier investigations, the abundances of Na, Mg and Al have been derived from NLTE statistical equilibrium calculations used as input to line profile synthesis. We do not confirm the age gap between thin and thick disk found by Fuhrmann. Instead we find an age boundary between halo and thick disk stars, however, with an absolute value of 14 Gyr that must be considered as preliminary. While the stellar sample is by no means complete, the resulting abundances indicate the necessity to revise current models of chemical evolution and/or stellar nucleosynthesis to allow for an adequate production of neutron-rich species in early stellar generations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.