In this paper, we present a novel constrained variational principle for simultaneous smoothing and estimation of the diffusion tensor field from complex valued diffusion-weighted images (DWI). The constrained variational principle involves the minimization of a regularization term of L(P) norms, subject to a nonlinear inequality constraint on the data. The data term we employ is the original Stejskal-Tanner equation instead of the linearized version usually employed in literature. The complex valued nonlinear form leads to a more accurate (when compared to the linearized version) estimate of the tensor field. The inequality constraint requires that the nonlinear least squares data term be bounded from above by a known tolerance factor. Finally, in order to accommodate the positive definite constraint on the diffusion tensor, it is expressed in terms of Cholesky factors and estimated. The constrained variational principle is solved using the augmented Lagrangian technique in conjunction with the limited memory quasi-Newton method. Experiments with complex-valued synthetic and real data are shown to depict the performance of our tensor field estimation and smoothing algorithm.
The dynamics of cortical cognitive maps developed by self-organization must include the aspects of long and short-term memory. The behavior of such a neural network is characterized by an equation of neural activity as a fast phenomenon and an equation of synaptic modification as a slow part of the neural system. We present a new method of analyzing the dynamics of a biological relevant system with different time scales based on the theory of flow invariance. We are able to show the conditions under which the solutions of such a system are bounded being less restrictive than with the K-monotone theory, singular perturbation theory, or those based on supervised synaptic learning. We prove the existence and the uniqueness of the equilibrium. A strict Lyapunov function for the flow of a competitive neural system with different time scales is given and based on it we are able to prove the global exponential stability of the equilibrium point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.