Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC.
Almost all cells in the human body are subjected to mechanical stresses. These forces can vary from a few Pascals (shear stress) to some mega Pascals (on hip cartilage). It is now well known that mechanical forces have a decisive effect on cellular physiology. In 1880, W. Roux introduced the concept of functional adaptation; which can be defined as a quantitative autoregulation controlled by stimuli like mechanical forces. These stresses influence functionality and cellular metabolism and can lead to appropriate tissue remodelling by triggering a cascade of reactions (mechanotransduction), being the signal for the adaptation of cells and tissues. However, although the main biological effects of mechanical forces are well documented, the relation between mechanical forces and physiological phenomena is largely unknown. In this paper, some effects of mechanical stresses on different cells (mesenchymal stem cells, bone cells, chondrocyte, endothelial cells, vascular or muscular cells, etc.) are summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.