The tenth human fibronectin type three domain ((10)Fn3) is a small (10 kDa), extremely stable and soluble protein with an immunoglobulin-like fold, but without cysteine residues. Selections from (10)Fn3-based libraries of proteins with randomized loops have yielded high-affinity, target-specific antibody mimics. However, little is known about the biophysical properties of such antibody mimics, which will determine their suitability for in vitro and medical applications. We characterized target binding and biophysical properties of two related (10)Fn3-based antibody mimics that bind vascular endothelial growth factor receptor two (VEGF-R2). The first antibody mimic, which has a dissociation constant (K(d)) of 13 nM, is highly stable [melting temperature (T(m))=62 degrees C] and soluble, whereas the second, which binds VEGF-R2 with 40 x higher affinity, is less stable (T(m) < 40 degrees C) and relatively insoluble. We used our understanding of these two (10)Fn3 derivatives and of wild-type (10)Fn3 structure to engineer the next generation of antibody mimics, which have an improved combination of high affinity (K(d)=0.59 nM), stability (T(m)=53 degrees C) and solubility. Our findings illustrate that (10)Fn3-based antibody mimics can be engineered for favorable biophysical properties even when 20% of the wild-type (10)Fn3 sequence is mutated in order to satisfy target-binding requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.