Empiric probiotics are commonly consumed by healthy individuals as means of life quality improvement and disease prevention. However, evidence of probiotic gut mucosal colonization efficacy remains sparse and controversial. We metagenomically characterized the murine and human mucosal-associated gastrointestinal microbiome and found it to only partially correlate with stool microbiome. A sequential invasive multi-omics measurement at baseline and during consumption of an 11-strain probiotic combination or placebo demonstrated that probiotics remain viable upon gastrointestinal passage. In colonized, but not germ-free mice, probiotics encountered a marked mucosal colonization resistance. In contrast, humans featured person-, region- and strain-specific mucosal colonization patterns, hallmarked by predictive baseline host and microbiome features, but indistinguishable by probiotics presence in stool. Consequently, probiotics induced a transient, individualized impact on mucosal community structure and gut transcriptome. Collectively, empiric probiotics supplementation may be limited in universally and persistently impacting the gut mucosa, meriting development of new personalized probiotic approaches.
Probiotics are widely prescribed for prevention of antibiotics-associated dysbiosis and related adverse effects. However, probiotic impact on post-antibiotic reconstitution of the gut mucosal host-microbiome niche remains elusive. We invasively examined the effects of multi-strain probiotics or autologous fecal microbiome transplantation (aFMT) on post-antibiotic reconstitution of the murine and human mucosal microbiome niche. Contrary to homeostasis, antibiotic perturbation enhanced probiotics colonization in the human mucosa but only mildly improved colonization in mice. Compared to spontaneous post-antibiotic recovery, probiotics induced a markedly delayed and persistently incomplete indigenous stool/mucosal microbiome reconstitution and host transcriptome recovery toward homeostatic configuration, while aFMT induced a rapid and near-complete recovery within days of administration. In vitro, Lactobacillus-secreted soluble factors contributed to probiotics-induced microbiome inhibition. Collectively, potential post-antibiotic probiotic benefits may be offset by a compromised gut mucosal recovery, highlighting a need of developing aFMT or personalized probiotic approaches achieving mucosal protection without compromising microbiome recolonization in the antibiotics-perturbed host.
We report the results of a first exploratory study testing the use of vaginal microbiome transplantation (VMT) from healthy donors as a therapeutic alternative for patients suffering from symptomatic, intractable and recurrent bacterial vaginosis (ClinicalTrials.gov NCT02236429). In our case series, five patients were treated, and in four of them VMT was associated with full long-term remission until the end of follow-up at 5-21 months after VMT, defined as marked improvement of symptoms, Amsel criteria, microscopic vaginal fluid appearance and reconstitution of a Lactobacillus-dominated vaginal microbiome. One patient presented with incomplete remission in clinical and laboratory features. No adverse effects were observed in any of the five women. Notably, remission in three patients necessitated repeated VMT, including a donor change in one patient, to elicit a long-standing clinical response. The therapeutic efficacy of VMT in women with intractable and recurrent bacterial vaginosis should be further determined in randomized, placebo-controlled clinical trials.Bacterial vaginosis (BV) is a form of vaginal microbial community alteration in which the microbiome normally dominated by Lactobacillus species switches to one characterized by the emergence of anaerobes [1][2][3][4] . BV is prevalent in women of reproductive age, affecting from one-fourth to one-third of women 5 . It ranges from an asymptomatic finding in most cases to a clinically symptomatic entity characterized by an abnormal, often malodorous vaginal discharge in 16% of women diagnosed with BV, summing up to a prevalence of 4.4% for symptomatic BV in women aged 14-49 years 5 . BV may be associated with risk of upper genital tract infection 6 , complications of pregnancy (particularly preterm birth and lower success in fertility treatments [7][8][9][10] ) and susceptibility to sexually transmitted infections 11 . At the clinically severe end of the BV spectrum, treatment with antibiotics (either systemic or vaginal) is associated with a 30% relapse rate within 3 months of initial treatment and a relapse rate of up to 50-70% within 1 year 12 . Therapeutic options are very limited in the subpopulation of women who experience persistent or recurrent BV despite multiple antibiotic treatment attempts [13][14][15] . Maintenance antimicrobial treatment 16,17 is often the treatment suggested in these cases, but it can predispose to vaginal candidiasis 18 and resistant infections 19,20 . Importantly, probiotic treatment of symptomatic patients with oral and/or vaginal administration of bacterial Lactobacillus strains has produced mixed results 21,22 , suggesting that the microbiome as a whole, rather than a single bacterial species, may be necessary for an effective cure at the clinically
Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food-and microbiomederived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10 + lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions. ll
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.