The equilibrium properties of the outer crust of cold nonaccreting magnetars (i.e. neutron stars endowed with very strong magnetic fields) are studied using the latest experimental atomic mass data complemented with a microscopic atomic mass model based on the Hartree-Fock-Bogoliubov method. The Landau quantization of electron motion caused by the strong magnetic field is found to have a significant impact on the composition and the equation of state of crustal matter. It is also shown that the outer crust of magnetars could be much more massive than that of ordinary neutron stars.
Magnetic fields of order 10 15 G have been measured at the surface of some neutron stars, and much stronger magnetic fields are expected to be present in the solid region beneath the surface.The effects of the magnetic field on the equation of state and on the composition of the crust due to Landau-Rabi quantization of electron motion are studied. Both the outer and inner crustal regions are described in a unified and consistent way within the nuclear-energy density functional theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.