We report a giant effective magnetic refrigeration capacity in a Ni40Co10Mn40Sn10 multifunctional alloy. With a large magnetization difference between austenite and martensite, this alloy shows a strong magnetic field dependence of transformation temperatures. Complete magnetic-field-induced structural transformation and a considerable magnetic entropy change are observed in a broad operating temperature window of 33 K near room temperature. Consequently, an effective magnetic refrigeration capacity of 251 J/kg for 5 T is achieved, which is the largest value for Ni-Mn-based Heusler alloys and comparable to that of the high-performance Gd-Si-Ge and La-Fe-Si magnetocaloric materials. Incorporating the advantages of low cost and non-toxicity, this alloy shows very promising prospects for room-temperature magnetic refrigeration.
The microstructural evolution during the uniaxial compression of an as-deposited bulk nanocrystalline (nc) Ni–Fe (average grain size d≈23nm) at ambient temperature was investigated by the high-energy x-ray diffraction (HEXRD) and the transmission-electron microscopy (TEM). HEXRD measurements indicated that the grain growth occurred in the nc Ni–Fe alloy during the uniaxial compression tests and that the grain growth shows orientation dependence, i.e., the grains preferentially grow perpendicular to the loading direction. This preferred grain growth was further confirmed by the TEM observations, indicating that the grains were elongated after the compressive plastic deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.