The structure of a bisterpyridine-like oligopyridine (abbreviated as 2,4'-BTP) monolayer on Au(111), adsorbed from an acetone solution, was studied by in situ scanning tunneling microscopy and cyclic voltammetry in aqueous 0.1 M H2SO4. Short-range ordered adsorption with an average distance between the individual molecules of about 2 nm was observed only at electrode potentials positive of +0.4 V vs SCE, whereas at more negative potentials, no order could be found. With the help of Cu underpotential deposition, a potential-induced, fast, and fully reversible structure transition within the organic monolayer was identified at about +0.4 V vs SCE. At negative potentials the molecules apparently cluster together and consequently current-potential curves resemble those for a bare gold surface, whereas for E>+0.4 V vs SCE the molecules are spread over the entire surface in a hexagonal, close-packed fashion. This may have interesting consequences for switching between different template structures.
A new cyano substituted bis(terpyridine) derivative CN-BTP was synthesized and its adsorption on highly oriented pyrolytic graphite (HOPG) and Au(111) was investigated. CN-BTP is closely related to the previously investigated 2,4'-BTP, where the cyanophenyl groups are replaced by pyridine moieties. The scanning tunneling microscopy (STM) investigation of CN-BTP at the liquid|HOPG interface shows a highly ordered herringbone structure that is stabilized by double weak intermolecular C-HN hydrogen bonds, partially through the -CN substituents, which is different from the most stable square structure of 2,4'-BTP. The adsorption processes were investigated using cyclic voltammetry (CV) on Au(111) in a neutral phosphate buffer. A fast and full adlayer formation could be observed with CN-BTP, whereas an extremely slow process with 2,4'-BTP under the same conditions was found. Our data show that the CN substituents on BTP not only change the structure of the monolayer at the liquid|HOPG interface, but also accelerate the phase transition process in the electrolyte dramatically. This could be explained by the adlayer-substrate interactions, which is supported by DFT calculations. Our findings might be extended more generally to further pyridine comprising self-assembling molecules to fine-tune the adlayer structure and phase transition/adsorption kinetics by replacing pyridine by cyanophenyl moieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.