Glycation of immunoglobulin G (IgG) can result from incubation with a reducing sugar in vitro or during circulation in vivo. Upon injection of a recombinantly produced human therapeutic IgG into humans, changes in the glycation levels could be observed as a function of circulation time. Mass changes on the individual IgG polypeptide chains as the results of glycation were determined using reversed-phase liquid chromatography/mass spectrometry. Changes to the light and heavy chains were low but easily detectable at 0.00092 and 0.0021 glucose (Glc) additions per chain per day, respectively. Levels of glycation found on the Fc portion of IgG isolated from healthy subjects, using a similar analytical approach, were on average 0.045 Glc molecules per fragment. In vivo glycation rates could be approximated in vitro by modeling the physiological glycation reaction with a simplified incubation containing physiological Glc concentrations, pH and temperature but with a high concentration of a single purified IgG. To test the impact of glycation on IgG function, highly glycated IgG1 and IgG2 were prepared containing on average 42-49 Glc molecules per IgG. Binding to FcγIIIa receptors, neonatal Fc receptor or protein A was similar or identical to the non-glycated IgG controls. Although the modifications were well distributed throughout the protein sequence, and at high enough levels to affect the elution position by size-exclusion chromatography, no changes in the tested Fc functions were observed.
Several studies using a variety of approaches have investigated the impact of the Fc glycan structure on IgG clearance rates. Most, but not all, of these studies have concluded that glycan structural differences do not affect clearance. Here we investigated the impact of glycan on the clearance of a human antibody in humans. To monitor glycan-dependent changes, a human IgG2 was affinity purified in a single step from serum samples from a human pharmacokinetic study. The glycan profile from the purified antibody samples was determined by RP-HPLC/MS analysis of the 2-aminobenzamide-labeled glycans. Relative levels of high-mannose species (M6-M9) decreased over circulation time. Differences in the individual high-mannose structural isoform clearance rates were measured from extracted ion current profiles. Similar changes to the glycan profile could be achieved through incubation of the antibody in serum in vitro, suggesting that the changes observed in vivo were the result of glycan cleavage, not differential antibody clearance. These results confirm that antibody clearance is not significantly affected by the Fc glycan structure and provide evidence for the presence of circulating mannosidase activity in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.