The influences of trace metals in the wastewater and shear stress by aeration were particularly examined to clarify the formation mechanism of nitrifying granules in an aerobic upflow fluidized bed (AUFB) reactor. It was found that Fe added as a trace element to the inorganic wastewater accumulated at the central part of the nitrifying granules. Another result obtained was that suitable shear stress by moderate aeration (0.07-0.20 L/min/L-bed) promoted granulation. Furthermore, it was successfully demonstrated that pre-aggregation of seed sludge using hematite promoted core formation, leading to rapid production of nitrifying granules. From these results, a nitrifying granulation mechanism is proposed: 1) as a first step, nitrifying bacteria aggregate along with Fe precipitation, and then the cores of granules are formed; 2) as a second step, the aggregates grow to be spherical or elliptical in form due to multiplication of the nitrifying bacteria and moderate shear stress in the reactor, and then mature nitrifying granules are produced. Fluorescence in situ hybridization (FISH) analysis successfully visualized the change in the spatial distribution of nitrifying bacteria in the granules, which supports the proposed granulation mechanism.
The performance of nitrifying granules, which had been produced in an aerobic upflow fluidised bed (AUFB) reactor, was investigated in various types of ammonia-containing wastewaters. When pure oxygen was supplied to the AUFB reactor with a synthetic wastewater containing a high concentration of ammonia (500 g-N/m3), the ammonia removal rate reached 16.7 kg-N/m3/day with a sustained ammonia removal efficiency of more than 80%. The nitrifying granules possessing a high settling ability could be retained with a high density (approximately 10,000 g-MLSS/m3) in a continuous stirring tank reactor (CSTR) even under a short hydraulic retention time (44 min), which enabled a high-rate and stable nitrification for an inorganic wastewater containing low concentrations of ammonia (50 g-N/m3). Moreover, the nitrifying granules exhibited sufficient performance in the nitrification of real industrial wastewater containing high concentrations of ammonia (1000-1400 g-N/m3) and salinity (1.2-2.2%), which was discharged from metal-refinery processes. When the nitrifying granules were used in cooperation with activated sludge to treat domestic wastewater containing organic pollutants as well as ammonia, they fully contributed to nitrification even though a part of activated sludge adhered onto the granule surfaces to form biofilms. These results show the wide applicability of nitrifying granules to various cases in the nitrification step of wastewater treatment plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.