Smart grid is envisaged to be the next-generation electrical power grids and this is founded based on successfully building up smart grid communication networks that can support all identified smart grid functionalities. Despite a range of communication choices available, utilities still struggle with how to affordably and reliably extend their networks to 100% of their service territories, especially to remote locations. In all smart grid models, it is often emphasized that consumers play a vital role in electricity management of supply and demand, and are expected to be coproducers of electricity, so-called prosumers. As such, virtual power plants (VPPs) by interconnecting hundreds of prosumers are expected to be a new paradigm shift in smart grid systems to better utilize the distributed energy sources. However, efficient VPP management is of great challenge in rural areas that are beyond the reach of primary networks while requiring enormous data exchange. To provide connectivity in rural areas, this paper proposes a satellite-based smart grid communication architecture for the efficient VPP management that requires collecting data from prosumers forming the VPP. Also, a priority-based scheduling algorithm for different smart grid data types is proposed to improve the performance of delay-sensitive applications. Simulation results demonstrate that the satellite-based communications can be a viable solution as a mean of smart grid communications for VPPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.