The Mdm2 protein is a key regulator of p53 activity and stability. Upon binding, Mdm2 inhibits the transcription regulatory activity of p53 and promotes its rapid degradation. In this study we investigated the effect of the human Mdm2 homologue Hdmx on p53 stability. We found that Hdmx does not target p53 for degradation, although, like Mdm2, it inhibits p53-mediated transcription activation. On the contrary, Hdmx was found to counteract the degradation of p53 by Mdm2, and stabilizes both p53 and Mdm2. The RING finger of Hdmx was found to be necessary and sufficient for this stabilization, and it probably involves hetero-oligomerization with the RING finger of Mdm2, which may lead to inhibition of Mdm2's ubiquitin ligase activity. However, Hdmx does not relieve the inhibition by Mdm2 of transcription activation by p53, probably due to the formation of a trimeric complex consisting of Hdmx, Mdm2 and p53. We propose a model in which Hdmx secures a pool of largely inactive p53 which, upon the induction of stress, can be quickly activated.
Background Failing of intrinsic chondrocyte repair after mechanical stress is known as one of the most important initiators of osteoarthritis. Nonetheless, insight into these early mechano-pathophysiological processes in age-related human articular cartilage is still lacking. Such insights are needed to advance clinical development. To highlight important molecular processes of osteoarthritis mechano-pathology, the transcriptome-wide changes following injurious mechanical stress on human aged osteochondral explants were characterized. Methods Following mechanical stress at a strain of 65% (65%MS) on human osteochondral explants (n65%MS = 14 versus ncontrol = 14), RNA sequencing was performed. Differential expression analysis between control and 65%MS was performed to determine mechanical stress-specific changes. Enrichment for pathways and protein-protein interactions was analyzed with Enrichr and STRING. Results We identified 156 genes significantly differentially expressed between control and 65%MS human osteochondral explants. Of note, IGFBP5 (FC = 6.01; FDR = 7.81 × 10−3) and MMP13 (FC = 5.19; FDR = 4.84 × 10−2) were the highest upregulated genes, while IGFBP6 (FC = 0.19; FDR = 3.07 × 10−4) was the most downregulated gene. Protein-protein interactions were significantly higher than expected by chance (P = 1.44 × 10−15 with connections between 116 out of 156 genes). Pathway analysis showed, among others, enrichment for cellular senescence, insulin-like growth factor (IGF) I and II binding, and focal adhesion. Conclusions Our results faithfully represent transcriptomic wide consequences of mechanical stress in human aged articular cartilage with MMP13, IGF binding proteins, and cellular senescence as the most notable results. Acquired knowledge on the as such identified initial, osteoarthritis-related, detrimental responses of chondrocytes may eventually contribute to the development of effective disease-modifying osteoarthritis treatments.
Cartilage has little intrinsic capacity for repair, so transplantation of exogenous cartilage cells is considered a realistic option for cartilage regeneration. We explored whether human-induced pluripotent stem cells (hiPSCs) could represent such unlimited cell sources for neo-cartilage comparable to human primary articular chondrocytes (hPACs) or human bone marrow-derived mesenchymal stromal cells (hBMSCs). For this, chondroprogenitor cells (hiCPCs) and hiPSC-derived mesenchymal stromal cells (hiMSCs) were generated from two independent hiPSC lines and characterized by morphology, flow cytometry, and differentiation potential. Chondrogenesis was compared to hBMSCs and hPACs by histology, immunohistochemistry, and RT-qPCR, while similarities were estimated based on Pearson correlations using a panel of 20 relevant genes. Our data show successful differentiations of hiPSC into hiMSCs and hiCPCs. Characteristic hBMSC markers were shared between hBMSCs and hiMSCs, with the exception of CD146 and CD45. However, neo-cartilage generated from hiMSCs showed low resemblances when compared to hBMSCs (53%) and hPACs (39%) characterized by lower collagen type 2 and higher collagen type 1 expression. Contrarily, hiCPC neo-cartilage generated neo-cartilage more similar to hPACs (65%), with stronger expression of matrix deposition markers. Our study shows that taking a stepwise approach to generate neo-cartilage from hiPSCs via chondroprogenitor cells results in strong similarities to neo-cartilage of hPACs within 3 weeks following chondrogenesis, making them a potential candidate for regenerative therapies. Contrarily, neo-cartilage deposited by hiMSCs seems more prone to hypertrophic characteristics compared to hPACs. We therefore compared chondrocytes derived from hiMSCs and hiCPCs with hPACs and hBMSCs to outline similarities and differences between their neo-cartilage and establish their potential suitability for regenerative medicine and disease modelling.
Osteoarthritis (OA) is a common disease characterized by cartilage degeneration and joint remodeling. The underlying molecular changes underpinning disease progression are incompletely understood. We investigated genes and pathways that mark OA progression in isolated primary chondrocytes taken from paired intact versus degraded articular cartilage samples across 38 patients undergoing joint replacement surgery (discovery cohort: 12 knee OA, replication cohorts: 17 knee OA, 9 hip OA patients). We combined genome-wide DNA methylation, RNA sequencing, and quantitative proteomics data. We identified 49 genes differentially regulated between intact and degraded cartilage in at least two -omics levels, 16 of which have not previously been implicated in OA progression. Integrated pathway analysis implicated the involvement of extracellular matrix degradation, collagen catabolism and angiogenesis in disease progression. Using independent replication datasets, we showed that the direction of change is consistent for over 90% of differentially expressed genes and differentially methylated CpG probes. AQP1, COL1A1 and CLEC3B were significantly differentially regulated across all three -omics levels, confirming their differential expression in human disease. Through integration of genomewide methylation, gene and protein expression data in human primary chondrocytes, we identified consistent molecular players in OA progression that replicated across independent datasets and that have translational potential.Osteoarthritis (OA) affects in excess of 40% of individuals over the age of 70 years 1 , and is a leading cause of pain and loss of physical function 2 . The molecular mechanisms underlying OA remain incompletely understood and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.