At off-design conditions, engine performance model prediction accuracy depends largely on its component characteristic maps. With the absence of actual characteristic maps, performance adaptation needs to be done for good imitations of actual engine performance. A nonlinear multiple point genetic algorithm based performance adaptation developed earlier by the authors using a set of nonlinear scaling factor functions has been proven capable of making accurate performance predictions over a wide range of operating conditions. However, the success depends on searching the right range of scaling factor coefficients heuristically, in order to obtain the optimum scaling factor functions. Such search ranges may be difficult to obtain and in many off-design adaption cases, it may be very time consuming due to the nature of the trial and error process. In this paper, an improvement on the present adaptation method is presented using a least square method where the search range can be selected deterministically. In the new method, off-design adaptation is applied to individual off-design point first to obtain individual off-design point scaling factors. Then plots of the scaling factors against the off-design conditions are generated. Using the least square method, the relationship between each scaling factor and the off-design operating condition is generated. The regression coefficients are then used to determine the search range of the scaling factor coefficients before multiple off-design points performance adaptation is finally applied. The developed adaptation approach has been applied to a model single-spool turboshaft engine and demonstrated a simpler and faster way of obtaining the optimal scaling factor coefficients compared with the original off-design adaptation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.