The beneficial effects of elevated CO2 on plants are expected to be compromised by the negative effects posed by other global changes. However, little is known about ozone (O3)-induced modulation of elevated CO2 response in plants with differential sensitivity to O3. An old (Triticum aestivum cv. Beijing 6, O3 tolerant) and a modern (T. aestivum cv. Zhongmai 9, O3 sensitive) winter wheat cultivar were exposed to elevated CO2 (714 ppm) and/or O3 (72 ppb, for 7h d–1) in open-topped chambers for 21 d. Plant responses to treatments were assessed by visible leaf symptoms, simultaneous measurements of gas exchange and chlorophyll a fluorescence, in vivo biochemical properties, and growth. It was found that elevated CO2 resulted in higher growth stimulation in the modern cultivar attributed to a higher energy capture and electron transport rate compared with the old cultivar. Exposure to O3 caused a greater growth reduction in the modern cultivar due to higher O3 uptake and a greater loss of photosystem II efficiency (mature leaf) and mesophyll cell activity (young leaf) than in the old cultivar. Elevated CO2 completely protected both cultivars against the deleterious effects of O3 under elevated CO2 and O3. The modern cultivar showed a greater relative loss of elevated CO2-induced growth stimulation due to higher O3 uptake and greater O3-induced photoinhibition than the old cultivar at elevated CO2 and O3. Our findings suggest that the elevated CO2-induced growth stimulation in the modern cultivar attributed to higher energy capture and electron transport rate can be compromised by its higher O3 uptake and greater O3-induced photoinhibition under elevated CO2 and O3 exposure.
The response of gas exchange and chlorophyll fluorescence along with changes in simulated rainfall were studied in water stressed plants Hedysarum fruticosum var. mongolicum (H.f.m.). Net photosynthetic rate (P N ), stomatal conductance (g s ), leaf water potential (Ψ leaf ), and apparent carboxylation efficiency (P N /C i ) were significantly increased with the increase of rainfall. However, they did not change synchronously. The complete recovery of both P N and P N /C i appeared 3 d after watering while g s and Ψ leaf were recovered 1 d after treatment. Gas exchange characters increased sharply from 5 to 15 mm rainfall and then maintained steady state with increasing rainfall. During the initial phase of water recovery, photosystem 2 (PS2) activity was not affected and its complete recovery occurred also 3 d after rainfall. Hence the recovery of P N was attributed to both opening of stomata and increase in carboxylation efficiency. Furthermore, PS2 activity was really impaired by water stress and could recover to the normal status when the water stress disappeared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.