Confinement of silicon nanoparticles in silicon nitride instead of an oxide matrix might materially facilitate its potential applications as a light-emitting component in optoelectronics. We report in this letter the production of high-density (up to 4.0×1012/cm2 from micrographs) silicon nanoparticles in SiNx thin films by chemical vapor deposition on cold substrates. Strong room-temperature photoluminescence was observed in the whole visible light range from the deposits that were postannealed at 500 °C for 2 min. The Si-in-SiNx films provide a significantly more effective photoluminescence than Si-in-SiOx fabricated with similar processing parameters: for blue light, the external quantum efficiency is over three times as large. The present results demonstrate that the nanostructured Si-in-SiNx system can be a very competitive candidate for the development of tunable high-efficiency light-emitting devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.