This paper will discuss the design and construction of BESIII [1], which is designed to study physics in the τ-charm energy region utilizing the new high luminosity BEPCII double ring e + ecollider [2]. The expected performance will be given based on Monte Carlo simulations and results of cosmic ray and beam tests. In BESIII, tracking and momentum measurements for charged particles are made by a cylindrical multilayer drift chamber in a 1 T superconducting solenoid. Charged particles are identified with a time-of-flight system based on plastic scintillators in conjunction with dE/dx (energy loss per unit pathlength) measurements in the drift chamber. Energies of electromagnetic showers are measured by a CsI(Tl) crystal calorimeter located inside the solenoid magnet. Muons are identified by arrays of resistive plate chambers in the steel magnetic flux return. The level 1 trigger system, Data Acquisition system and the event filter system based on networked computers will also be described.
The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for the neutral Higgs bosons which are predicted by the Minimal Supersymmetric Standard Model (MSSM). The data of the four collaborations are statistically combined and examined for their consistency with the background hypothesis and with a possible Higgs boson signal. The combined LEP data show no significant excess of events which would indicate the production of Higgs bosons. The search results are used to set upper bounds on the cross-sections of various Higgs-like event topologies. The results are interpreted within the MSSM in a number of "benchmark" models, including CP-conserving and CP-violating scenarios. These interpretations lead in all cases to large exclusions in the MSSM parameter space. Absolute limits are set on the parameter tan β and, in some scenarios, on the masses of neutral Higgs bosons.
Recently the Experiment to Detect the Global Epoch of Reionization Signature (EDGES) reported the detection of a 21cm absorption signal stronger than astrophysical expectations. In this paper we study the impact of radiation from dark matter (DM) decay and primordial black holes (PBH) on the 21cm radiation temperature in the reionization epoch, and impose a constraint on the decaying dark matter and PBH energy injection in the intergalactic medium, which can heat up neutral hydrogen gas and weaken the 21cm absorption signal. We consider decay channels DM→ e + e − , γγ, µ + µ − , bb and the 10 15−17 g mass range for primordial black holes, and require the heating of the neutral hydrogen does not negate the 21cm absorption signal. For e + e − , γγ final states and PBH cases we find strong 21cm bounds that can be more stringent than the current extragalactic diffuse photon bounds. For the DM→ e + e − channel, the lifetime bound is τDM > 10 27 s for sub-GeV dark matter. The bound is τDM ≥ 10 26 s for sub-GeV DM→ γγ channel and reaches 10 27 s at MeV DM mass. For bb and µ + µ − cases, the 21 cm constraint is better than all the existing constraints for mDM < 20 GeV where the bound on τDM ≥ 10 26 s. For both DM decay and primordial black hole cases, the 21cm bounds significantly improve over the CMB damping limits from Planck
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.