Gustducin is a transducin-like G protein selectively expressed in taste receptor cells. The alpha subunit of gustducin (alpha-gustducin) is critical for transduction of responses to bitter or sweet compounds. We identified a G-protein gamma subunit (Ggamma13) that colocalized with alpha-gustducin in taste receptor cells. Of 19 alpha-gustducin/Ggamma13-positive taste receptor cells profiled, all expressed the G protein beta3 subunit (Gbeta3); approximately 80% also expressed Gbeta1. Gustducin heterotrimers (alpha-gustducin/Gbeta1/Ggamma13) were activated by taste cell membranes plus bitter denatonium. Antibodies against Ggamma13 blocked the denatonium-induced increase of inositol trisphosphate (IP3) in taste tissue. We conclude that gustducin heterotrimers transduce responses to bitter and sweet compounds via alpha-gustducin's regulation of phosphodiesterase (PDE) and Gbetagamma's activation of phospholipase C (PLC).
The ability to taste the sweetness of carbohydrate-rich foodstuffs has a critical role in the nutritional status of humans. Although several components of bitter transduction pathways have been identified, the receptors and other sweet transduction elements remain unknown. The Sac locus in mouse, mapped to the distal end of chromosome 4 (refs. 7-9), is the major determinant of differences between sweet-sensitive and -insensitive strains of mice in their responsiveness to saccharin, sucrose and other sweeteners. To identify the human Sac locus, we searched for candidate genes within a region of approximately one million base pairs of the sequenced human genome syntenous to the region of Sac in mouse. From this search, we identified a likely candidate: T1R3, a previously unknown G protein-coupled receptor (GPCR) and the only GPCR in this region. Mouse Tas1r3 (encoding T1r3) maps to within 20,000 bp of the marker closest to Sac (ref. 9) and, like human TAS1R3, is expressed selectively in taste receptor cells. By comparing the sequence of Tas1r3 from several independently derived strains of mice, we identified a specific polymorphism that assorts between taster and non-taster strains. According to models of its structure, T1r3 from non-tasters is predicted to have an extra amino-terminal glycosylation site that, if used, would interfere with dimerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.