Recently, deep coal mining has posed a significant challenge due to the threat of water inrush from highly pressured aquifers in the floor strata. Water inrush in the floor strata are often associated with the structural characteristics of the underlying fault zones. The permeability of these fault zones is a critical factor in determining their potential as conduits for water flow. The variation in permeability is attributed to the varying cementation degree across different locations within the fault zones. Hence, this study is based on the key stratum theory and introduces the concept of a water-blocking key stratum within fault zones. This research focuses on the engineering context of the 16th coal seam above the lower coal seam in the 10603 working face of the Yangcun Coal Mine's tenth mining area. The study investigates the activation characteristics of the 10605F5 reverse fault zone, which cuts through the working face. Various methods, including test of simulation of similar materials and numerical simulations, are employed to analyze the hydraulic pressure distribution and the impact of mining activities on the water-blocking key stratum within the 10605F5 reverse fault zone. The research findings will provide valuable insights for preventing fault activation and water inrush.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.