We report the first experimental demonstration of electrically controlled Solc-type optical wavelength filters and TE-TM mode converters based on Ti-diffused periodically poled lithium niobate (Ti:PPLN) waveguides. A maximum mode conversion efficiency or a peak spectral transmittance of ~99% in the telecom C-L bands was obtained from a 9-mm long, 21.5-21.8-mum multiple-grating Ti:PPLN waveguide device with a switching voltage of as low as 22 V or 0.99 Vxd(mum)/L(cm), where d is the electrode separation and L is the electrode length. The spectral range of this device can be tuned by temperature at a rate of ~0.758 nm/ degrees C.
We report on an iterative design scheme for and the first experimental demonstration of active narrowband multi-wavelength filters based on aperiodically poled lithium niobate crystals. A simultaneous transmission of 8 wavelengths, each with a ~0.45-nm linewidth and nearly 100% peak transmittance, was achieved in such a device. The transmission spectrum of this device can be tuned by temperature at a rate of ~0.65 nm/ degrees C.
We report a tunable, pulsed multiline intracavity optical parametric oscillator (IOPO) realized in an Nd:YVO4 laser using a two-dimensionally domain engineered MgO:LiNbO3 as simultaneously an electro-optic Bragg Q switch and a multichannel optical parametric downconverter. The MgO:LiNbO3 was periodically and aperiodically poled along the crystallographic y and x axes, respectively, to simultaneously satisfy the phase-matching conditions required by the two quasi-phase-matching devices. When Q switched by 1 kHz, 300 V pulses, three signal lines at 1518, 1526, and 1534 nm were simultaneously generated, each with a peak power of ∼1 kW from the IOPO at 8.3 W diode power at 50°C. Spectral tuning of the three-line IOPO with temperature was demonstrated.
The Ag sulfurization resistance of the pure Ag film and four Ag-based alloy films was evaluated by the reflectance decay after the Ag sulfurization test. Among all Ag-based alloy films, the In alloying solute in the Ag-In alloy film shows the best resistance to the Ag sulfurization. Using x-ray photoelectron spectroscopy analysis, the chemical state of the alloying solutes in the Ag-based alloy films was examined. It is found that, with being alloyed in the Ag matrix phase, the 3d5/2 core-level peak positions of the alloying solutes (In, Sn, and Pd) shift toward the lower binding energy region, which is defined as a negative chemical shift. The chemical shifts of In, Sn, and Pd alloying solutes are –0.31 eV, –0.23 eV, and –0.2 eV, respectively. The absolute value of the negative chemical shift represents the tendency of Ag atoms losing valence electrons to the alloying solutes. As the Ag atoms lose valence electrons to the alloying solutes, the Ag atoms have a less tendency to provide the valence electrons to form covalent bonding with S atoms, which suppresses the Ag sulfurization reaction (2Ag + S → Ag2S). Therefore, the larger the absolute value of the negative chemical shift, the higher is the reflectance decay (lesser Ag sulfurization resistance).
We report on an internally Q-switched self-optical parametric oscillator (SOPO) based on a monolithic two-dimensional (2D) periodically poled Nd:MgO:LiNbO(3) (Nd:MgO:PPLN) integrating three device functionalities of a laser gain medium, an electro-optic Bragg Q-switch, and an optical parametric gain medium (OPGM). The quasi-phase-matching conditions required by the Bragg Q-switch and OPGM are both satisfied in the 2D nonlinear photonic crystal (NPC) structure formed in the Nd:MgO:PPLN. A 1525 nm signal with a pulse energy of ∼3.3 μJ (>350 W peak power) was obtained from the SOPO at 8.5 W diode pump power. An off-angle signal at 1612 nm, amplified by a unique gain-enhancement effect in this 2D NPC, was also observed. Tuning of the SOPO in the eye-safe region was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.