To investigate the toughness enhancing effect of a floating electrode on an actuator, a conventional actuator and an actuator with a floating electrode are numerically analyzed using the finite element method. Electrostatic analysis is performed for both types of actuators based on an assumption of the mathematical equivalence between out-of-plane deformation and electrostatics. The electric behavior of a ceramic is idealized by the electric displacement saturation model. The numerical results of electric fields and electric displacement fields are obtained from the electrostatic analysis. For both types of actuators, the self-equilibrating stress fields induced by a non-uniform distribution of the electric displacement fields are computed using the finite element method. The stress intensity factors for a flaw-like crack nucleated from the edge of an internal electrode are evaluated for each case. We found that the stress intensity factor for the actuator with a floating electrode is smaller than the factor for the conventional actuator when the length of the flaw-like crack is approximately equal to the grain size. Thus, we conclude that actuators with floating electrodes have higher reliability than conventional actuators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.