A highly reliable interface of an ultrathin Zr(Ge) exhaustion interlayer between Cu(Zr) film and porous SiOC:H (p-SiOC:H) dielectric has been developed in the present work. After being processed at a moderate elevated temperature (say, 450 °C), a self-formed nanomultilayer of CuGex/ZrOx(ZrSiyOx) was produced at the interface of Cu(Zr)/p-SiOC:H film stacks, which showed strong ability to effectively hinder Cu atoms diffusion into p-SiOC:H film and free Si atoms diffusion into Cu film. The mechanism involving the thermal stability of the films system is analyzed based on detailed characterization studies.
Nano-grained ZrB2 thin films are prepared by radio-frequency (rf) magnetron sputtering and, the thermal stability and the diffusion barrier performance are evaluated at elevated temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.