[1] It is generally accepted that electromagnetic ion cyclotron (EMIC) waves are generated around the equatorial regions and propagate toward the high latitude ionospheres in both hemispheres. Here we describe a prolonged EMIC wave event in the Pc2 (0.1-0.2 Hz) frequency band above the He + cyclotron frequency detected by the four Cluster satellites as they traversed sunward from L $ 13 in the outer magnetosphere to the magnetopause, over 13 -20 magnetic latitude north of the equator and across the high latitude cusp region near local magnetic noon. Wave packet energy propagated dominantly along the geomagnetic field direction, confirming this was a traveling EMIC wave rather than a toroidal field line resonance. The energy packets propagated in alternating directions rather than uni-directionally from the equator, implying the wave source was located in a high latitude region away from the equator, where a minimum in the B field is located. The CIS-CODIF H + ion data provided evidence that the waves were generated locally via the ion cyclotron instability. We believe the off-equatorial minimum magnetic field regions may be important source regions for these waves in the outer magnetosphere. Citation: Liu, Y. H., B. J. Fraser, and F. W. Menk (2012), Pc2 EMIC waves generated high off the equator in the dayside outer magnetosphere, Geophys. Res.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.