Apoptin (apoptosis-inducing protein) harbors tumor-selective characteristics making it a potential safe and effective anticancer agent. Apoptin becomes phosphorylated and induces apoptosis in a large panel of human tumor but not normal cells. Here, we used an in vitro oncogenic transformation assay to explore minimal cellular factors required for the activation of apoptin. Flag-apoptin was introduced into normal fibroblasts together with the transforming SV40 large T antigen (SV40 LT) and SV40 small t antigen (SV40 ST) antigens. We found that nuclear expression of SV40 ST in normal cells was sufficient to induce phosphorylation of apoptin. Mutational analysis showed that mutations disrupting the binding of ST to protein phosphatase 2A (PP2A) counteracted this effect. Knockdown of the ST-interacting PP2A–B56 γ subunit in normal fibroblasts mimicked the effect of nuclear ST expression, resulting in induction of apoptin phosphorylation. The same effect was observed upon downregulation of the PP2A–B56 δ subunit, which is targeted by protein kinase A (PKA). Apoptin interacts with the PKA-associating protein BCA3/AKIP1, and inhibition of PKA in tumor cells by treatment with H89 increased the phosphorylation of apoptin, whereas the PKA activator cAMP partially reduced it. We infer that inactivation of PP2A, in particular, of the B56 γ and B56 δ subunits is a crucial step in triggering apoptin-induced tumor-selective cell death.
Multidrug resistance (MDR) in breast cancer treatment is the major cause leading to the failure of chemotherapy. P-glycoprotein (P-gp), the product of the human MDR1 gene, plays a key role in resistance to chemotherapy and confers cross-resistance to many structurally unrelated anticancer drugs. We have previously reported that integrin αvβ6 plays a critical role in breast cancer invasion and metastasis. However, whether and how αvβ6 is associated with P-gp and regulated by potential genetic mechanisms in breast cancer remains unclear. In the present study, we further investigated the reversal effect and underlying mechanisms of MDR in breast cancer. Two small interfering RNA constructs (pSUPER-β6shRNAs) targeting two different regions of the β6 gene have been designed to inhibit αvβ6 expression by transfecting them into adriamycin-resistant MCF-7/ADR cell lines. Suppression of αvβ6 dramatically downregulated the levels of MDR1 gene mRNA and P-gp. In particular, β6shRNA-mediated silencing of αvβ6 gene increased significantly the cellular accumulation of Rhodamine 123 and markedly decreased drug efflux ability, suggesting that β6shRNAs indeed inhibit P-gp mediated drug efflux and effectively overcome drug resistance. In addition, inhibition of integrin αvβ6 suppressed the expression of ERK1/2. Interestingly, our data demonstrate that suppression of integrin αvβ6 caused significant downregulation of Bcl-2, Bcl-xL and upregulation of caspase 3, Bad, accompanied by increasing activity of cytochrome C. A possible connection between αvβ6 and P-gp in drug resistance biology is suggested. Taken together, β6shRNA could efficiently inhibit αvβ6 and MDR1 expression in vitro and these findings may offer specifically useful means to reverse MDR in breast cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.