The development of hydrogel-based molecularly imprinted polymer (HydroMIPs) technology for the memory imprinting of proteins and for protein biosensor development presents many possibilities, including uses in bio-sample clean-up or selective extraction, replacement of biological antibodies in immunoassays and biosensors for medicine and the environment. Biosensors for proteins and viruses are currently expensive to develop because they require the use of expensive antibodies. Because of their biomimicry capabilities (and their potential to act as synthetic antibodies), HydroMIPs potentially offer a route to the development of new low-cost biosensors. Herein, a metal ion-mediated imprinting approach was employed to metal-code our hydrogel-based MIPs for the selective recognition of bovine serum albumin (BSA). Specifically, Co(II)-complex based MIPs exhibited a 66% enhancement (in comparison to our normal MIPs) exhibiting 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/ non-imprinted (NIP) control). The proposed metal-coded MIPs for protein recognition are intended to lead to unprecedented improvement in MIP selectivity and for future biosensor development that rely on an electrochemical redox processes.
In the present study, a new thiourea derivative bearing benzothiazole ligand, 1-(benzo[d]thiazol-2yl)thiourea (btt) and its ternary metal (Cu(II), Co(II) and Ni(II)) complexes were synthesized. The structural characterization was carried out by micro analysis, IR, 1 H-NMR, EPR, UV-Visible spectral analyses, molar conductance and thermal analysis studies. Spectral studies of complexes revealed that the metal complexes have distorted octahedral geometry. Molecular modelling study was performed to evaluate the recognition of target compounds at the 3MNG binding pocket. The docking results revealed that copper complex selectively binds to the crucial amino acid residues in the active site of 3MNG. The in vitro antioxidant activity of the ligand and its metal complexes was assayed by radical scavenging activity (DPPH, H 2 O 2 and NO) and ferric reducing antioxidant power (FRAP) methods. The ligand showed moderate antioxidant activity whereas the metal complexes exhibited better antioxidant activity than that of the ligand. The results of the four methods proved that the copper complex is the most potent antioxidant among all the tested compounds.
The removal of Ni(II) from aqueous solutions using biomass prepared from Ceiba pentandra hulls powder modified with citric acid treatment (CAMCPH) has been studied by batch method. The biosorbent was characterised before and after citric acid modification using SEM, FT-IR and XRD. Experimental parameters that influence the biosorption of Ni(II), such as pH, biosorbent dose, contact time and initial concentration of metal ion have been investigated. The adsorption of Ni(II) increased with increase in contact time and reached equilibrium within 50 min. The maximum removal of Ni(II) was observed at pH 5.0. The kinetic data were analysed using three adsorption kinetic models: the pseudo-first, second-order kinetics and intra-particle diffusion. The results showed that the pseudo-second-order model fits the experimental data very well. The equilibrium data were analysed using Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. Langmuir model provided the best correlation for the adsorption of Ni(II) by CAMCPH and the monolayer biosorption capacity for Ni(II) removal was 34.34 mg/g. Desorption experiments were carried out using HCl solution and the recovery of the metal ion from CAMCPH was found 98%. Desorption experiments showed the feasibility of regeneration of the biosorbent for further use after treating with dilute HCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.