Effects of organic Ca2+ channel antagonists, Ni2+ and ryanodine on the electrophysiological and positive inotropic responses to histamine were examined in isolated guinea-pig left atria. Histamine increased force of contraction, prolonged action potential duration (APD) and hyperpolarized the membrane in a concentration-dependent manner. Histamine at a concentration of 1 mumol/l produced a dual-component positive inotropic response composed of an initial increasing phase (initial component) and a second and late developing, greater positive inotropic phase (second component), whereas causing monophasic changes in APD and resting potential. The electrophysiological and dual-component positive inotropic effects induced by histamine were antagonized by chlorpheniramine (1 mumol/l) but not by cimetidine (10 mumol/l), indicating that both effects are exclusively mediated by H1-receptors. The positive inotropic response to 1 mumol/l histamine was changed by the pretreatment with nifedipine (1 mumol/l) and nisoldipine (1 mumol/l). In the presence of these dihydropyridines, the second component was almost completely abolished, while the initial component was hardly affected. On the other hand, verapamil (3 mumol/l) and diltiazem (10 mumol/l) failed to modify the multiphasic inotropic response to histamine. None of the Ca2+ channel antagonists affected the histamine-induced APD prolongation. In the presence of Ni2+ at a concentration of 0.3 mmol/l, at which it produced no negative inotropic action, the second component of the positive inotropic effect of histamine was specifically suppressed whereas the histamine-induced APD prolongation was unaffected. Preferential attenuation of the second component was also observed in the presence of 30 nmol/l ryanodine.(ABSTRACT TRUNCATED AT 250 WORDS)
Since it has been reported that several class I drugs stereoselectively block sodium channels, potassium channels and muscarinic receptors in cardiac tissues, electrophysiologic and anticholinergic effects of enantiomers of pirmenol, a class I antiarrhythmic drug, were examined. Both (+) and (-) pirmenol depressed the maximum upstroke velocity (Vmax) of the action potential in a concentration-dependent manner in guinea-pig papillary muscles driven at 1.0 Hz, and there was no significant difference in the potency of the class I effect between the enantiomers. The onset rates of use-dependent block (UDB) of Vmax at 2.0 Hz for 10 mumol/l (+) and (-) pirmenol were 0.30 +/- 0.03 and 0.29 +/- 0.01 per action potential, and the recovery time constants from UDB for (+) and (-) pirmenol were 27.0 +/- 2.7 and 27.7 +/- 1.9 s, respectively, indicating no difference in the binding and unbinding kinetics to the sodium channel between the enantiomers. Both (+) pirmenol and (-) pirmenol prolonged action potential duration (APD) at low concentrations (1-10 mumol/l) and shortened it at high concentrations (30-100 mumol/l). Again, there was little difference with respect to the effects on APD between the enantiomers. However, in the isolated guinea-pig left atria (-) pirmenol more potently antagonized the negative inotropic effect of carbachol than (+) pirmenol, and the pA2 values for (+) and (-) pirmenol were 6.41 and 6.71, respectively. The functional study was supported by the radioligand binding experiments using [3H]N-methylscopolamine ([3H]NMS) in guinea-pig left atrial membranes.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.