Research on the National Spherical Torus Experiment, NSTX, targets physics understanding needed for extrapolation to a steady-state ST Fusion Nuclear Science Facility, pilot plant, or DEMO. The unique ST operational space is leveraged to test physics theories for next-step tokamak operation, including ITER. Present research also examines implications for the coming device upgrade, NSTX-U. An energy confinement time, τ E , scaling unified for varied wall conditions exhibits a strong improvement of B T τ E with decreased electron collisionality, accentuated by lithium (Li) wall conditioning. This result is consistent with nonlinear microtearing simulations that match the experimental electron diffusivity quantitatively and predict reduced electron heat transport at lower collisionality. Beam-emission spectroscopy measurements in the steep gradient region of the pedestal indicate the poloidal correlation length of turbulence of about ten ion gyroradii increases at higher electron density gradient and lower T i gradient, consistent with turbulence caused by trapped electron instabilities. Density fluctuations in the pedestal top region indicate ion-scale microturbulence compatible with ion temperature gradient and/or kinetic ballooning mode instabilities. Plasma characteristics change nearly continuously with increasing Li evaporation and edge localized modes (ELMs) stabilize due to edge density gradient alteration. Global mode stability studies show stabilizing resonant kinetic effects are enhanced at lower collisionality, but in stark contrast have almost no dependence on collisionality when the plasma is off-resonance. Combined resistive wall mode radial and poloidal field sensor feedback was used to control n = 1 perturbations and improve stability. The disruption probability due to unstable resistive wall modes (RWMs) was surprisingly reduced at very high β N /l i > 10 consistent with low frequency magnetohydrodynamic spectroscopy measurements of mode stability. Greater instability seen at intermediate β N is consistent with decreased kinetic RWM stabilization. A model-based RWM state-space controller produced long-pulse discharges exceeding β N = 6.4 and β N /l i = 13. Precursor analysis shows 96.3% of disruptions can be predicted with 10 ms warning and a false positive rate of only 2.8%. Disruption halo currents rotate toroidally and can have significant toroidal asymmetry. of this phenomenon in designing future RF systems. The snowflake divertor configuration enhanced by radiative detachment showed large reductions in both steady-state and ELM heat fluxes (ELMing peak values down from 19 MW m −2 to less than 1.5 MW m −2 ). Toroidal asymmetry of heat deposition was observed during ELMs or by 3D fields. The heating power required for accessing H-mode decreased by 30% as the triangularity was decreased by moving the X-point to larger radius, consistent with calculations of the dependence of E × B shear in the edge region on ion heat flux and X-point radius. Co-axial helicity injection reduced the induct...
The mission of the National Spherical Torus Experiment (NSTX) is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high β operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale length. Results from n = 3 braking studies are consistent with the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of high harmonic fast-waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap current fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance l i ∼ 0.4 with strong shaping (κ ∼ 2.7, δ ∼ 0.8) with β N approaching the with-wall β-limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction f NI ∼ 71%. Instabilities driven by super-Alfvénic ions will be an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfvénic. Linear toroidal Alfvén eigenmode thresholds and appreciable fast ion loss during multi-mode bursts are measured and these results are compared with theory. The impact of n > 1 error fields on stability is an important result for ITER. Resistive wall mode/resonant field amplification feedback combined with n = 3 error field control was used on NSTX to maintain plasma rotation with β above the no-wall limit. Other highlights are results of lithium coating experiments, momentum confinement studies, scrape-off layer width scaling, demonstration of divertor heat load mitigation in strongly shaped plasmas and coupling of coaxial helicity injection plasmas to ohmic heating ramp-up. These results advance the ST towards next step fusion energy devices such as NHTX and ST-CTF.
QUEST focuses on the steady state operation of the spherical tokamak by controlled PWI and electron Bernstein wave current drive. One of the main purposes of QUEST is an achievement of long duration discharge with MW-class injected power. As the result, QUEST should be operated in the challenging region on heat and particle handling. To do the particle handling, high temperature all metal wall up to 623 K and closed divertors are planned, which is to realize the steady-state operation under recycling ratio, R = 1. This is a dispensable check to DEMO, because wall pumping should be avoided as possible in the view of tritium retention. The QUEST project will be developed in increment step such as, I. low β steady state operation in limiter configuration, II. low β steady state operation in divertor configuration, III. relatively high β steady state operation in closed divertor configuration. Phase I in the project corresponds to these two years, and final goal of phase I is to make full current drive plasma up to 20 kA. Closed divertor will be designed and tested in the Phase II. QUEST is running from Oct., 2008 and the first results are introduced.
Several improvements to the MAST plant and diagnostics have facilitated new studies advancing the physics basis for ITER and DEMO, as well as for future spherical tokamaks. Using the increased heating capabilities P NBI ≤ 3.8 MW H-mode at I p = 1.2 MA was accessed showing that the energy confinement on MAST scales more weakly with I p and more strongly with B t than in the ITER IPB98(y,2) scaling. Measurements of the fuel retention of shallow pellets extrapolate to an ITER particle throughput of 70% of its original design value. The anomalous momentum diffusion, χ φ , is linked to the ion diffusion, χ i , with a Prandtl number close to P φ ≈ χ φ /χ i ≈ 1, although χ i approaches neoclassical values. New high spatially resolved measurements of the edge radial electric field, E r , show that the position of steepest gradients in electron pressure and E r are coincident, but their magnitudes are not linked. The T e pedestal width on MAST scales with the β pol rather than ρ pol . The ELM frequency for type-IV ELMs, new in MAST, was almost doubled using n = 2 resonant magnetic perturbations from a set of 4 external coils (n = 1, 2). A new internal 12 coil set (n ≤ 3) has been commissioned. The filaments in the inter-ELM and L-mode phase are different from ELM filaments, and the characteristics in L-mode agree well with turbulence calculations. A variety of fast particle driven instabilities were studied from 10 kHz saturated fishbone like activity up to 3.8 MHz compressional Alfvén eigenmodes (CAE). The damping rate of ellipticityinduced AE was measured to be 4% using the new internal coils as antennae. Fast particle instabilities also affect the off-axis NBI current drive and lead to fast ion diffusion of the order of 0.5 m 2 /s and reduce the driven current fraction from 40% to 30%. EBW current drive start-up is demonstrated for the first time in a spherical tokamak generating plasma currents up to 55 kA. Many of these studies contributed to the physics basis of a planned upgrade to MAST. Introduction: MAST [1]is one of the two leading tight aspect ratio (A = ε −1 = R/a = 0.85 m/0.65 m ∼ 1.3, I p ≤ 1.5 MA) tokamaks in the world. The hot T ≤ 3 keV, dense n e = (0.1 − 1) × 10 20 m −3 and highly shaped (δ ≤ 0.5, 1.6 ≤ κ ≤ 2.5) plasmas are accessed at moderate toroidal field B t (R = 0.7 m) ≤ 0.62 T and show many similarities to conventional aspect ratio tokamaks. Detailed physics studies using the extensive array of state of the art diagnostics and access to different physics regimes help to consolidate the physics basis for ITER and DEMO [2,3], and explore the viability of future devices based on the spherical tokamak (ST) concept such as a component test facility (CTF) [4] or an advanced power plant [5]. The challenge for today's experiments is to find an integrated scenario that extrapolates to these future devices, in particular to develop plasmas with reduced power load on plasma facing components, notably from edge localised modes (ELM), but high confinement facilitated by internal or edge transport ba...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.