The expression of beta-amyloid precursor protein (betaAPP) by astrocytes is well documented; however, data concerning oligodendrocytes remain controversial. The main goal of the present study was to determine whether or not oligodendrocytes in culture constitutively express the different betaAPP isoforms. Oligodendrocytes were cultured in a chemically defined medium that avoids putative effects of unknown serum factors on oligodendrocyte development. We have employed immunocytochemistry and in situ hybridization with antibodies and synthetic oligonucleotides recognizing, respectively, specific protein epitopes and mRNA transcripts of rat betaAPP isoforms. Oligodendrocytes, in both mixed primary cultures in the presence of serum or in secondary cultures in defined medium, were clearly labeled by antibodies directed to different betaAPP sequences. Antibodies against the serine protease inhibitor domain of betaAPP, also strongly labelled oligodendrocytes. Immunohistochemistry and in situ hybridization were combined to determine precisely the expression of different isoforms of betaAPP. In situ hybridization revealed the presence in oligodendrocytes of mRNA transcripts coding not only for betaAPP695 but also for betaAPP770 and betaAPP751. This indicates that betaAPP immunoreactivity found in oligodendrocytes corresponds to constitutive expression of betaAPP. Oligodendrocyte cultured in chemically defined medium are able to express not only betaAPP695 but also betaAPP770, betaAPP751 isoforms containing the Kunitz protease inhibitor domain. Although the role of betaAPP in the pathological processes of Alzheimer's disease (AD) remains unknown, possible disturbances of betaAPP processing and/or synthesis in oligodendrocytes may account for some myelin disorders observed in AD and other senile dementias.
The expression of beta-amyloid precursor protein (betaAPP) by astrocytes is well documented; however, data concerning oligodendrocytes remain controversial. The main goal of the present study was to determine whether or not oligodendrocytes in culture constitutively express the different betaAPP isoforms. Oligodendrocytes were cultured in a chemically defined medium that avoids putative effects of unknown serum factors on oligodendrocyte development. We have employed immunocytochemistry and in situ hybridization with antibodies and synthetic oligonucleotides recognizing, respectively, specific protein epitopes and mRNA transcripts of rat betaAPP isoforms. Oligodendrocytes, in both mixed primary cultures in the presence of serum or in secondary cultures in defined medium, were clearly labeled by antibodies directed to different betaAPP sequences. Antibodies against the serine protease inhibitor domain of betaAPP, also strongly labelled oligodendrocytes. Immunohistochemistry and in situ hybridization were combined to determine precisely the expression of different isoforms of betaAPP. In situ hybridization revealed the presence in oligodendrocytes of mRNA transcripts coding not only for betaAPP695 but also for betaAPP770 and betaAPP751. This indicates that betaAPP immunoreactivity found in oligodendrocytes corresponds to constitutive expression of betaAPP. Oligodendrocyte cultured in chemically defined medium are able to express not only betaAPP695 but also betaAPP770, betaAPP751 isoforms containing the Kunitz protease inhibitor domain. Although the role of betaAPP in the pathological processes of Alzheimer's disease (AD) remains unknown, possible disturbances of betaAPP processing and/or synthesis in oligodendrocytes may account for some myelin disorders observed in AD and other senile dementias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.