Human Cytomegalovirus (HCMV) infection is associated with the acceleration of transplant vascular sclerosis (TVS) and chronic allograft rejection (CR). HCMV-negative recipients of latently HCMV infected donor grafts are at highest risk for developing CMV-disease. Using a rat heart transplant CR model, we have previously shown that acute rat CMV (RCMV) infection following transplantation significantly accelerates both TVS and CR. Here, we report that RCMV-naïve recipients of heart allografts from latently RCMV-infected donors undergo acceleration of CR with similar kinetics as acutely infected recipients. In contrast to acutely infected recipients, treatment of recipients of latently infected donor hearts with ganciclovir did not prevent CR or TVS. We observed the formation of tertiary lymphoid structures (TLOs) containing macrophages and T-cells in latently infected hearts prior to transplantation but not in uninfected rats. Moreover, pathway analysis of gene expression data from allografts from latently infected donors, indicated an early and sustained production of TLO-associated genes compared to allografts from uninfected donors. We conclude that RCMV-induced TLO formation and alteration of donor tissue T-cell profiles prior to transplantation in part mediate the ganciclovir-insensitive rejection of latently infected donor allografts transplanted into naïve recipients by providing a scaffold for immune activation.
Cytomegalovirus accelerates transplant vascular sclerosis (TVS) and chronic rejection (CR) in solid organ transplants; however, the mechanisms involved are unclear. We determined the efficacy of a CMV vaccine in preventing CMV‐accelerated rat cardiac allograft rejection in naïve recipients of CMV+ donor hearts. F344 donor rats were infected with RCMV 5 days prior to heterotopic cardiac transplantation into CMV‐naïve or H2O2‐inactivated RCMV‐vaccinated Lewis recipients. Recipients of RCMV‐infected donor hearts rejected at POD59, whereas vaccinated recipients exhibited a significantly prolonged time to rejection‐POD97, similar to recipients of uninfected donor hearts (POD108). Although all of the donor hearts were preinfected, the vaccinated recipients had lower graft and PBMC viral loads at POD 7 compared to unvaccinated controls. Adoptive T cell and passive antibody transfers from vaccinated Lewis rats into naïve recipients demonstrate that both T‐cell and B‐cell arms of the adaptive immune response provide protection against CMV‐accelerated rejection. Similar findings were obtained when testing three different adjuvants in passive transfer experiments. We have determined that the timing of the vaccine prior to transplantation and the specific adjuvant play critical roles in mediating anti‐viral responses and promoting graft survival. CMV vaccination prior to transplantation may effectively increase graft survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.