In this paper, we developed crack detection methods to measure growing behavior of fatigue-crack using digital image processing system and visual C. gthe proposed method is used to develop the crack monitoring system and observe the crack growing behavior automatically, the time and eforts for fatigue test could be dramatically reduced. And also it is possible to estimate and manage eflciently the safety and lifetime of industrial facilitiesbased on the collected data.
We have investigated anisotropic lattice relaxation and its mechanism of ZnSe epitaxial layer grown on (001) GaAs substrate by MBE. Double-crystal X-ray rocking curves for (004), {115} and {404} reflections were measured as a function of the azimuthal rotation angle of the sample. We observed the sinusoidal oscillation of the FWHM of the epilayer peak for (004) reflections due to the asymmetric dislocation density along two orthogonal <110> directions, and the direction of the maximum FWHM corresponding to high dislocation density is along [110]. In addition, the strain along [110] is smaller than that along [1-10], indicating that the layer suffered anisotropic lattice relaxation. The direction of larger relaxation([l-10]) is not consistent with that of high dislocation density([110]). The results suggest that the asymmetry in dislocation density is not responsible for the anisotropic relaxation of the ZnSe epilayer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.