We previously demonstrated that renal tubular peptidylarginine deiminase-4 (PAD4) is induced after ischemia-reperfusion (IR) injury and this induction of PAD4 exacerbates ischemic acute kidney injury (AKI) by promoting renal tubular inflammation and neutrophil infiltration. However, the mechanisms of renal tubular PAD4 induction after IR remain unknown. Here, we tested the hypothesis that ATP, a proinflammatory danger-associated molecular pattern (DAMP) ligand released from necrotic cells after IR injury, induces renal tubular PAD4 and exacerbates ischemic AKI via P2 purinergic receptor activation. ATP as well as ATPγS (a nonmetabolizable ATP analog) induced PAD4 mRNA, protein, and activity in human and mouse renal proximal tubule cells. Supporting the hypothesis that ATP induces renal tubular PAD4 via P2X7 receptor activation, A804598 (a selective P2X7 receptor antagonist) blocked the ATP-mediated induction of renal tubular PAD4 whereas BzATP (a selective P2X7 receptor agonist) mimicked the effects of ATP by inducing renal tubular PAD4 expression and activity. Moreover, ATP-mediated calcium influx in renal proximal tubule cells was blocked by A804598 and was mimicked by BzATP. P2X7 activation by BzATP also induced PAD4 expression and activity in mouse kidney in vivo. Finally, supporting a critical role for PAD4 in P2X7-mediated exacerbation of renal injury, BzATP exacerbated ischemic AKI in PAD4 wild-type mice but not in PAD4-deficient mice. Taken together, our studies show that ATP induces renal tubular PAD4 via P2X7 receptor activation to exacerbate renal tubular inflammation and injury after IR.
We previously demonstrated that kidney peptidylarginine deiminase-4 (PAD4) plays a critical role in ischemic acute kidney injury (AKI) in mice by promoting renal tubular inflammation and neutrophil infiltration (Ham A, Rabadi M, Kim M, Brown KM, Ma Z, D'Agati V, Lee HT. Am J Physiol Renal Physiol 307: F1052-F1062, 2014). Although the role of PAD4 in granulocytes including neutrophils is well known, we surprisingly observed profound renal proximal tubular PAD4 induction after renal ischemia-reperfusion (I/R) injury. Here we tested the hypothesis that renal proximal tubular PAD4 rather than myeloid-cell lineage PAD4 plays a critical role in exacerbating ischemic AKI by utilizing mice lacking PAD4 in renal proximal tubules (PAD4 PEPCK Cre mice) or in granulocytes (PAD4 LysM Cre mice). Mice lacking renal proximal tubular PAD4 were significantly protected against ischemic AKI compared with wild-type (PAD4) mice. Surprisingly, mice lacking PAD4 in myeloid cells were also protected against renal I/R injury although this protection was less compared with renal proximal tubular PAD4-deficient mice. Renal proximal tubular PAD4-deficient mice had profoundly reduced renal tubular apoptosis, whereas myeloid-cell PAD4-deficient mice showed markedly reduced renal neutrophil infiltration. Taken together, our studies suggest that both renal proximal tubular PAD4 as well as myeloid-cell lineage PAD4 play a critical role in exacerbating ischemic AKI. Renal proximal tubular PAD4 appears to contribute to ischemic AKI by promoting renal tubular apoptosis, whereas myeloid-cell PAD4 is preferentially involved in promoting neutrophil infiltration to the kidney and inflammation after renal I/R.
Despite increasing calls to build equitable data infrastructures, the education field has yet to have a shared guideline around equitable education data management and stewardship. To address this gap, we propose one framework from the data governance literature: the FAIR (Findable, Accessible, Interoperable, Reusable) data management principles complemented by the CARE (Collective benefits, Authority to control, Responsibility, Ethics) principles. We argue that making education data Findable, Accessible, Interoperable, and Reusable (FAIR) is a matter of equity and central to equity-focused data reuse. We illustrate the importance of FAIR education data by synthesizing our research experience and literature at the intersection of data governance and equity-focused data use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.