& This paper presents the design and implementation of an autonomous robot navigation system for intelligent target collection in dynamic environments. A feature-based multi-stage fuzzy logic (MSFL) sensor fusion system is developed for target recognition, which is capable of mapping noisy sensor inputs into reliable decisions. The robot exploration and path planning are based on a grid map oriented reinforcement path learning system (GMRPL), which allows for long-term predictions and path adaptation via dynamic interactions with physical environments. In our implementation, the MSFL and GMRPL are integrated into subsumption architecture for intelligent target-collecting applications. The subsumption architecture is a layered reactive agent structure that enables the robot to implement higher-layer functions including path learning and target recognition regardless of lower-layer functions such as obstacle detection and avoidance. The real-world application using a Khepera robot shows the robustness and flexibility of the developed system in dealing with robotic behaviors such as target collecting in the ever-changing physical environment.Target collection using autonomous robots can be broadly applied to a variety of fields such as product transferring in manufacturing factory, rubbish cleaning in office, and bomb searching on battle field, etc. Such robots should be able to cope with the large amount of uncertainties existing in physical environment which is often dynamic and unpredictable. The task requires the robot to achieve certain goals without bumping into obstacles based on sensor readings. However, the goal-based world model is often difficult to be precisely predefined and sometimes the obstacles are not static. Moreover, the sensor information is imprecise and unreliable in most cases. Therefore, the autonomous robot controller needs to be endowed with the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.