The electrical resistivity of a thermoresponsive polyurethane shape-memory polymer ͑SMP͒ filled with micron sized Ni powders is investigated in this letter. We show that, by forming conductive Ni chains under a weak static magnetic field ͑0.03 T͒, the electrical conductivity of the SMP composite in the chain direction can be improved significantly, which makes it more suitable for Joule heat induced shape recovery. In addition, Ni chains reinforce the SMP significantly but their influence on the glass transition temperature is about the same as that of the randomly distributed Ni powders.
This paper describes the manufacturing, characterization and parametric modeling of a novel fiber-reinforced composite flexible skin with in-plane negative Poisson’s ratio (auxetic) behavior. The elastic mechanical performance of the auxetic skin is evaluated using a three-dimensional analytical model based on the classical laminate theory (CLT) and Sun’s thick laminate theory. Good agreement is observed between in-plane Poisson’s ratios and Young’s moduli of the composite skin obtained by the theoretical model and the experimental results. A parametric analysis carried out with the validated model shows that significant changes in the in-plane negative Poisson’s ratio can be achieved through different combinations of matrix and fiber materials and stacking sequences. It is also possible to identify fiber-reinforced composite skin configurations with the same in-plane auxeticity but different orthotropic stiffness performance, or the same orthotropic stiffness performance but different in-plane auxeticity. The analysis presented in this work provides useful guidelines to develop and manufacture flexible skins with negative Poisson’s ratio for applications focused on morphing aircraft wing designs.
Flexible thermoelectric generators can power wearable electronics by harvesting body heat. However, existing thermoelectric materials rarely realize high flexibility and output properties simultaneously. Here we present a facile, cost-effective, and scalable two-step impregnation method for fabricating a three-dimensional thermoelectric network with excellent elasticity and superior thermoelectric performance. The reticular construction endows this material with ultra-light weight (0.28 g cm−3), ultra-low thermal conductivity (0.04 W m−1 K−1), moderate softness (0.03 MPa), and high elongation (>100%). The obtained network-based flexible thermoelectric generator achieves a pretty high output power of 4 μW cm−2, even comparable to state-of-the-art bulk-based flexible thermoelectric generators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.