Organic photovoltaics (OPVs) with three types of double anode buffer layers (DABLs), i.e., 4.5 nm hole-transport material 4,4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl layer, 1 nm electron-transport material Bphen, and 1 nm typical insulator LiF layer, respectively, deposited onto 10 nm MoO3 layer, were fabricated. All these three DABLs can improve the efficiency of CuPc/C60 based planar heterojunction OPV, especially with about 10% enhancement of short-circuit current (ISC). Based on the external quantum efficiency (EQE) and transient photovoltage (TPV) measurements, a mechanism of depressing harmful exciton dissociation at the MoO3/CuPc interface has been proposed. This harmful dissociation results in exciton loss within the CuPc layer, while a proper ultrathin layer inserted at MoO3/CuPc interface can effectively depress the dissociation and thus improve the total photocurrent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.