The hot deformation behaviour of Nb-Ti microalloyed high-strength steel was investigated. Hot compression tests were conducted in the temperature range 900 to 1100°C under strain rates of 0.1, 1, and 5 s-1. Dynamic recrystallization (DRX) occurs as the main flow softening mechanism at high temperature and low strain rate. The hot deformation activation energy was calculated to be about 404 699 J/mol. The constitutive equation was developed to describe the relationship between peak stress, strain rate, and deformation temperature. The characteristics of DRX at different deformation conditions were extracted from the stressstrain curves using the work hardening parameter. The Cingara-McQueen equation was developed to predict the flow curves up to the peak strain. The processing maps were obtained on the basis of a dynamic materials model. The results predict an instability region in the temperature range 1010 to 1100°C when the strain rate exceeds 0.78 s-1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.