A study of the flow and heat transfer in a stationary model of a two-pass internal coolant passage is presented, which focuses on the flow characteristic effects on the wall heat transfer distribution. Results are given in the upstream fully developed region. Heat transfer measurements were made with a transient technique using thermochromic liquid crystal technique to measure a surface temperature. The technique allows full surface heat transfer coefficient measurements on all the walls. Flow measurements were made with a stereoscopic digital PIV system, which measures all three-velocity components simultaneously. The coolant passage model consists of two square ducts, each having a 20 hydraulic diameter length. The ducts are connected by a sharp 180° bend with a rectangular outer wall. 45° ribs are mounted in a staggered arrangement on the bottom and top walls of both legs. The height of the ribs is equal to 0.1 hydraulic diameters. They are spaced 10 rib heights apart. The flow and heat transfer measurements were obtained at one flow condition with an inlet flow Reynolds number, based on the hydraulic diameter, of 50,000. The paper presents detailed measurement results of the flow characteristics and of the heat transfer distribution in the upstream straight leg of the passage and describes how the main and secondary flows influence the heat transfer distribution in the fully developed regions of the channel.
A study of the flow and heat transfer in a stationary model of a two-pass internal coolant passage is presented, which focuses on the flow characteristic effects on the wall heat transfer distribution. Results are given in the upstream fully developed region. Heat transfer measurements were made with a transient technique using thermochromic liquid crystal technique to measure a surface temperature. The technique allows full surface heat transfer coefficient measurements on all the walls. Flow measurements were made with a stereoscopic digital PIV system, which measures all three-velocity components simultaneously. The coolant passage model consists of two square ducts, each having a 20 hydraulic diameter length. The ducts are connected by a sharp 180 deg bend with a rectangular outer wall. 45 deg ribs are mounted in a staggered arrangement on the bottom and top walls of both legs. The height of the ribs is equal to 0.1 hydraulic diameters. They are spaced 10 rib heights apart. The flow and heat transfer measurements were obtained at one flow condition with an inlet flow Reynolds number, based on the hydraulic diameter, of 50,000. The paper presents detailed measurement results of the flow characteristics and of the heat transfer distribution in the upstream straight leg of the passage and describes how the main and secondary flows influence the heat transfer distribution in the fully developed regions of the channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.