SUMMARYIgA deposition in glomerular mesangium and the interaction with mesangial cells may well be the final common pathway to IgA nephropathy (IgAN). Altered hinge-region O-glycosylation of IgA1 from patients with IgAN may predispose to mesangial deposition and activation of the mesangial cell (MC) by IgA1, via a novel IgA1 receptor, and may be a key event in the pathogensis of IgAN. The aim of this study was to investigate the binding capacity and biological effects of IgA1, from both patients with IgAN and healthy controls, on human mesangial cells (HMC). Serum IgA1 was isolated with jacalin affinity chromatography, heated to aggregated form (aIgA1) and labelled with 125 I. Binding capacity of aIgA1 in vitro to cultured primary HMC was evaluated by a radioligand binding assay and the specificity of binding was determined by a competitive inhibition assay. Intracellular calcium release was studied by confocal analysis and phosphorylation of extracellular signal-regulated kinase (ERK) was determined by Western blot analysis. Change of cell cycles was demonstrated by flow cytometry and HMC proliferation was evaluated by direct cell count. Expression of TGF-b mRNA and production of supernatant fibronectin were tested by RT-PCR and indirect competitive ELISA, respectively. aIgA1 from both the patients with IgAN and normal controls bound to HMC in a dose-dependent, saturable manner, and was saturated at approximately 500 pmoles per 0·5 ml of aIgA1. aIgA1 from patients with IgAN, however, bound to HMC at a higher speed and Scatchard analysis revealed a Kd of (8·89 ± 2·1) ¥ 10 -8 M versus (4·3 ± 1·2) ¥ 10 -7 M for aIgA1 from healthy controls ( P = 0·026).The binding was specific because it was only inhibited by unlabelled Mono-IgA1 (mIgA1) and not by serum albumin or IgG. aIgA1 from patients with IgAN could induce release of intracellular calcium, phosphorylation of ERK, DNA synthesis, proliferation of HMC, expression of TGF-b mRNA and secretion of fibronectin in HMC in a similar time-dependent manner as aIgA1 from healthy controls, but the effects were much stronger and the durations were much longer ( P < 0·05, respectively). We conclude that aIgA1 from patients with IgAN has a higher binding capacity to HMC and stronger biological effects than aIgA1 from healthy controls. This suggests that direct interaction between IgA1 and HMC and subsequential pathophysiological responses may play an important role in the pathogenesis for IgAN.
SummaryIncreasing evidence has demonstrated that propylthiouracil (PTU) could induce ANCA positive vasculitis. However, our previous work has suggested that only one-fifth of the PTU-induced ANCA positive patients had clinical vasculitis and so the mechanism is not clear. Anti-endothelial cell antibodies (AECA) have been implicated in the pathogenesis of various vasculitides, including primary ANCA positive systemic vasculitis. The purpose of this study is to investigate the prevalence of AECA and their possible role in the pathogenesis of patients with PTU-induced ANCA positive vasculitis. Sera from 11 patients with PTU-induced ANCA positive vasculitis at both active and quiescent phases, and sera from 10 patients with PTU-induced ANCA but without clinical vasculitis, were studied. Sera from 30 healthy blood donors were collected as normal controls. Soluble proteins from 1% Triton-100 extracted in vitro cultured human umbilical vein endothelial cells were used as antigens and an immunoblotting technique was performed to determine the presence of AECA, and their specific target antigens were identified. In patients with PTU-induced ANCA positive vasculitis, 10 of the 11 patients in an active phase of disease were serum IgG-AECA positive and six protein bands of endothelial antigens could be blotted (61 kD, 69 kD, 77 kD, 85 kD, 91 kD and 97 kD). However, in the quiescent phase, seven of the 10 positive sera turned negative. None of the ANCA positive but vasculitis negative patients or normal controls were AECA positive. In conclusion, AECA could be found in sera from patients with PTU-induced ANCA positive vasculitis and were associated more closely with vasculitic disease activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.