A sparkling-type draft cloudy sake (Japanese rice wine), AWANAMA, was recently developed using high hydrostatic pressure (HHP) treatment as a non-thermal pasteurization method. This prototype sake has a high potential market value, since it retains the fresh taste and flavor similar to draft sake while avoiding over-fermentation. From an economic point of view, a lower pressure level for HHP pasteurization is still required. In this study, we carried out a genome analysis of a pressure-sensitive (piezosensitive) mutant strain, a924E1, which was generated by UV mutagenesis from a laboratory haploid Saccharomyces cerevisiae strain, KA31a. This mutant strain had a deletion of the COX1 gene region in the mitochondrial DNA and had deficient aerobic respiration and mitochondrial functions. A metabolomic analysis revealed restricted flux in the TCA cycle of the strain. The results enabled us to use aerobic respiration deficiency as an indicator for screening a piezosensitive mutant. Thus, we generated piezosensitive mutants from a Niigata-sake yeast strain, S9arg, which produces high levels of ethyl caproate but does not produce urea and is consequently suitable for brewing a high-quality sake. The resultant piezosensitive mutants showed brewing characteristics similar to the S9arg strain. This study provides a screening method for generating a piezosensitive yeast mutant as well as insight on a new way of applying HHP pasteurization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.