Chronic electrical stimulation of the precentral (motor) cortex using surgically implanted electrodes is performed to treat medication-resistant neurogenic pain. The goal of this placebo-controlled study was to obtain such antalgic effects by means of a non-invasive cortical stimulation using repetitive transcranial magnetic stimulation (rTMS). Eighteen patients with intractable neurogenic pain of various origins were included and underwent a 20 min session of either 10 Hz, 0.5 Hz or* sham rTMS over the motor cortex in a random order. A significant decrease in the mean pain level of the series was obtained only after 10 Hz rTMS. This study shows that a transient pain relief can be induced by 10 Hz rTMS of the motor cortex in some patients suffering from chronic neurogenic pain.
Thirty-two patients with refractory central and neuropathic pain of peripheral origin were treated by chronic stimulation of the motor cortex between May 1993 and January 1997. The mean follow-up was 27.3 months. The first 24 patients were operated according to the technique described by Tsubokawa. The last 13 cases (eight new patients and five reinterventions) were operated by a technique including localisation by superficial CT reconstruction of the central region and neuronavigator guidance. The position of the central sulcus was confirmed by the use of intraoperative somatosensory evoked potentials. The somatotopic organisation of the motor cortex was established peroperatively by studying the motor responses at stimulation of the motor cortex through the dura. Ten of the 13 patients with central pain (77%) and ten of the 12 patients with neuropathic facial pain had experienced substantial pain relief (75%). One of the three patients with post-paraplegia pain was clearly improved. A satisfactory result was obtained in one patient with pain related to plexus avulsion and in one patient with pain related to intercostal herpes zooster. None of the patients developed epileptic seizures. The position of the stimulating poles effective on pain corresponded to the somatotopic representation of the motor cortex. The neuronavigator localisation and guidance technique proved to be most useful identifying the appropriate portion of the motor gyrus. It also allowed the establishment of reliable correlations between electrophysiological-clinical and anatomical data which may be used to improve the clinical results and possibly to extend the indications of this technique.
Neurostimulation therapy is indicated for neuropathic pain that is refractory to medical treatment, and includes stimulation of the dorsal spinal cord, deep brain structures, and the precentral motor cortex. Spinal cord stimulation is validated in the treatment of selected types of chronic pain syndromes, such as failed back surgery syndrome. Deep brain stimulation (DBS) has shown promise as a treatment for peripheral neuropathic pain and phantom limb pain. Compared with DBS, motor cortex stimulation (MCS) is currently more frequently used, mainly because it is more easily performed, and has a wider range of indications (including central poststroke pain). Controlled trials have demonstrated the efficacy of MCS in the treatment of various types of neuropathic pain, although these trials included a limited number of patients and need to be confirmed by large, controlled, multicenter studies. Despite technical progress in neurosurgical navigation, results from studies of MCS are variable, and validated criteria for selecting good candidates for implantation are lacking. However, the evidence in favor of MCS is sufficient to include it in the range of therapeutic options for refractory neuropathic pain. In this Review, the respective efficacies and mechanisms of action of DBS and MCS are discussed.
Epidural motor cortex stimulation (MCS) has been proposed as a treatment for chronic, drug-resistant neuropathic pain of various origins. Regarding pain syndromes due to peripheral nerve lesion, only case series have previously been reported. We present the results of the first randomized controlled trial using chronic MCS in this indication. Sixteen patients were included with pain origin as follows: trigeminal neuralgia (n = 4), brachial plexus lesion (n = 4), neurofibromatosis type-1 (n = 3), upper limb amputation (n = 2), herpes zoster ophthalmicus (n = 1), atypical orofacial pain secondary to dental extraction (n = 1) and traumatic nerve trunk transection in a lower limb (n = 1). A quadripolar lead was implanted, under radiological and electrophysiological guidance, for epidural cortical stimulation. A randomized crossover trial was performed between 1 and 3 months postoperative, during which the stimulator was alternatively switched 'on' and 'off' for 1 month, followed by an open phase during which the stimulator was switched 'on' in all patients. Clinical assessment was performed up to 1 year after implantation and was based on the following evaluations: visual analogue scale (VAS), brief pain inventory, McGill Pain questionnaire, sickness impact profile and medication quantification scale. The crossover trial included 13 patients and showed a reduction of the McGill Pain questionnaire-pain rating index (P = 0.0166, Wilcoxon test) and McGill Pain questionnaire sensory subscore (P = 0.01) when the stimulator was switched 'on' compared to the 'off-stimulation' condition. However, these differences did not persist after adjustment for multiple comparisons. In the 12 patients who completed the open study, the VAS and sickness impact profile scores varied significantly in the follow-up and were reduced at 9-12 months postoperative, compared to the preoperative baseline. At final examination, the mean rate of pain relief on VAS scores was 48% (individual results ranging from 0% to 95%) and MCS efficacy was considered as good or satisfactory in 60% of the patients. Pain relief after 1 year tended to correlate with pain scores at 1 month postoperative, but not with age, pain duration or location, preoperative pain scores or sensory-motor status. Although the results of the crossover trial were slightly negative, which may have been due to carry-over effects from the operative and immediate postoperative phases, observations made during the open trial were in favour of a real efficacy of MCS in peripheral neuropathic pain. Analgesic effects were obtained on the sensory-discriminative rather than on the affective aspect of pain. These results suggest that the indication of MCS might be extended to various types of refractory, chronic peripheral pain beyond trigeminal neuropathic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.