The present work discusses methods of stabilizing the frequencies of commercially-available laser diodes. Laser diodes are generally compact and long-lived. The frequency stability, which makes them ideal for onboard laser interferometer light-sources, in applications such as the satellite-to-satellite tracking systems used to verify fluctuations in earth's gravity field, which, in turn, indicate other critical changes in the environment, is the key characteristic of this work. We used the devices typically operating at 780nm, and their frequencies can be stabilized using either of two systems; one, employing the Doppler-free absorption line of Rb atoms and another, using the Faraday effect of the Rb absorption line. In both cases, the use of the proper modulation frequency and amplitude improved frequency stability, overall, attaining 2.05× 10 -12 and 2.73× 10 -11 , respectively, in the square root of the Allan variance, by measuring the beat-note between two independently-stabilized laser diodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.