SummaryGenome‐wide association (GWA) studies based on GBLUP models are a common practice in animal breeding. However, effect sizes of GWA tests are small, requiring larger sample sizes to enhance power of detection of rare variants. Because of difficulties in increasing sample size in animal populations, one alternative is to implement a meta‐analysis (MA), combining information and results from independent GWA studies. Although this methodology has been used widely in human genetics, implementation in animal breeding has been limited. Thus, we present methods to implement a MA of GWA, describing the proper approach to compute weights derived from multiple genomic evaluations based on animal‐centric GBLUP models. Application to real datasets shows that MA increases power of detection of associations in comparison with population‐level GWA, allowing for population structure and heterogeneity of variance components across populations to be accounted for. Another advantage of MA is that it does not require access to genotype data that is required for a joint analysis. Scripts related to the implementation of this approach, which consider the strength of association as well as the sign, are distributed and thus account for heterogeneity in association phase between QTL and SNPs. Thus, MA of GWA is an attractive alternative to summarizing results from multiple genomic studies, avoiding restrictions with genotype data sharing, definition of fixed effects and different scales of measurement of evaluated traits.
Glioblastoma multiforme (GBM) has been recognized as the most lethal type of malignant brain tumor. Despite efforts of the medical and research community, patients’ survival remains extremely low. Multi-omic profiles (including DNA sequence, methylation and gene expression) provide rich information about the tumor. These profiles are likely to reveal processes that may be predictive of patient survival. However, the integration of multi-omic profiles, which are high dimensional and heterogeneous in nature, poses great challenges. The goal of this work was to develop models for prediction of survival of GBM patients that can integrate clinical information and multi-omic profiles, using multi-layered Bayesian regressions. We apply the methodology to data from GBM patients from The Cancer Genome Atlas (TCGA, n = 501) to evaluate whether integrating multi-omic profiles (SNP-genotypes, methylation, copy number variants and gene expression) with clinical information (demographics as well as treatments) leads to an improved ability to predict patient survival. The proposed Bayesian models were used to estimate the proportion of variance explained by clinical covariates and omics and to evaluate prediction accuracy in cross validation (using the area under the Receiver Operating Characteristic curve, AUC). Among clinical and demographic covariates, age (AUC = 0.664) and the use of temozolomide (AUC = 0.606) were the most predictive of survival. Among omics, methylation (AUC = 0.623) and gene expression (AUC = 0.593) were more predictive than either SNP (AUC = 0.539) or CNV (AUC = 0.547). While there was a clear association between age and methylation, the integration of age, the use of temozolomide, and either gene expression or methylation led to a substantial increase in AUC in cross-validaton (AUC = 0.718). Finally, among the genes whose methylation was higher in aging brains, we observed a higher enrichment of these genes being also differentially methylated in cancer.
Pork quality plays an important role in the meat processing industry. Thus, different methodologies have been implemented to elucidate the genetic architecture of traits affecting meat quality. One of the most common and widely used approaches is to perform genome-wide association (GWA) studies. However, a limitation of many GWA in animal breeding is the limited power due to small sample sizes in animal populations. One alternative is to implement a meta-analysis of GWA (MA-GWA) combining results from independent association studies. The objective of this study was to identify significant genomic regions associated with meat quality traits by performing MA-GWA for 8 different traits in 3 independent pig populations. Results from MA-GWA were used to search for genes possibly associated with the set of evaluated traits. Data from 3 pig data sets (U.S. Meat Animal Research Center, commercial, and Michigan State University Pig Resource Population) were used. A MA was implemented by combining -scores derived for each SNP in every population and then weighting them using the inverse of estimated variance of SNP effects. A search for annotated genes retrieved genes previously reported as candidates for shear force (calpain-1 catalytic subunit [] and calpastatin []), as well as for ultimate pH, purge loss, and cook loss (protein kinase, AMP-activated, γ 3 noncatalytic subunit []). In addition, novel candidate genes were identified for intramuscular fat and cook loss (acyl-CoA synthetase family member 3 mitochondrial []) and for the objective measure of muscle redness, CIE a* (glycogen synthase 1, muscle [] and ferritin, light polypeptide []). Thus, implementation of MA-GWA allowed integration of results for economically relevant traits and identified novel genes to be tested as candidates for meat quality traits in pig populations.
The identification of genomic regions that affect additive genetic variation and contain genes involved in controlling growth and fat deposition has enormous impact in the farm animal industry (e.g., carcass merit and meat quality). Therefore, a genomewide association study was implemented in an F pig population using a 60,000 SNP marker panel for traits related to growth and fat deposition. Estimated genomic EBV were linearly transformed to calculate SNP effects and to identify genomic positions possibly associated with the genetic variability of each trait. Genomic segments were then defined considering the markers included in a region 1 Mb up- and downstream from the SNP with the smallest -value and a false discovery rate < 0.05 for each trait. The significance for each 2-Mb segment was tested using the Bonferroni correction. Significant SNP were detected on SSC2, SSC3, SSC5, and SSC6, but 2-Mb segment significant effects were observed on SSC3 for weight at birth (wt_birth) and on SSC6 for 10th-rib backfat and last-rib backfat measured by ultrasound at different ages. Furthermore, a 6-Mb segment on SSC6 was also considered because the 2-Mb segments for 10 different fat deposition traits were overlapped. Although the segment effects for each trait remain significant, the proportion of additive variance explained by this larger segment was slightly smaller in some traits. In general, the results confirm the presence of genetic variability for wt_birth on SSC3 (18.0-20.2 Mb) and for fat deposition traits on SSC6 (133.8-136.0 Mb). Within these regions, fibrosin () and myosin light chain, phosphorylatable, fast skeletal muscle () genes could be considered as candidates for the wt_birth signal on SSC3, and the SERPINE1 mRNAbinding protein 1 gene () may be a candidate for the fat deposition trait signals on SSC6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.