The working condition of the floating platform will be affected by wind and waves in the marine environment. Therefore, it is of great importance to carry out real-time prediction research on the mooring load for ensuring the normal operation of the floating platform. Current researches have focused on the real-time prediction of mooring load using the machine learning method, but most of the studies are about the application and generalization analysis of different models. There are few studies on the influence of data distribution characteristics on prediction accuracy. In view of the above problems, this paper investigates the effect of data skewness on the prediction performance for the deep learning model. The long short-term memory (LSTM) neural network is applied to construct the mooring load prediction model. The numerical simulation datasets of the deep water semi-submersible platform are employed in model training and data analysis. The prediction performance of the model is preliminarily verified based on the simulation results. Meanwhile, the distribution characteristics of mooring load data under different sea states are analyzed and a skewness processing method based on the Box-Cox Transformation (BCT) is proposed. The effect of data skewness on prediction accuracy is further investigated. The comparison results indicate that reducing the mooring load data skewness can effectively improve the prediction accuracy of LSTM model.
A semi-analytical methodology on the sound transmission of stiffened laminated plate under different reinforcement forms is developed to explore its sound insulation performance under the action of a plane sound wave load, in accordance with the classical laminated plate theory and in consideration of stiffener flexion and torsional motions. The formula of acoustic transmission loss is obtained by utilizing spatial harmonic expansion and the virtual work principle. Subsequently, the predicted values of proposed methodology are validated by the existing models. Eventually, some characteristic parameters are considered to investigate their effects on sound insulation behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.