Modern analytical database systems predominantly rely on column-oriented storage, which offers superior compression efficiency due to the nature of the columnar layout. This compression, however, creates challenges in decoding speed during query processing. Previous research has explored predicate pushdown on encoded values to avoid decoding, but these techniques are restricted to specific encoding schemes and predicates, limiting their practical use. In this paper, we propose a generic predicate pushdown approach that supports arbitrary predicates by leveraging selection pushdown to reduce decoding costs. At the core of our approach is a fast select operator capable of directly extracting selected encoded values without decoding, by using Bit Manipulation Instructions, an instruction set extension to the X86 architecture. We empirically evaluate the proposed techniques in the context of Apache Parquet using both micro-benchmarks and the TPC-H benchmark, and show that our techniques improve the query performance of Parquet by up to one order of magnitude with representative scan queries. Further experimentation using Apache Spark demonstrates speed improvements of up to 5.5X even for end-to-end queries involving complex joins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.