In magnetic confinement fusion (MCF), the plasma always exhibits an anisotropic temperature distribution, which may impact not only the plasma dynamics but also the nuclear reaction process. Here, through theoretical derivations and self-consistent particle-in-cell simulations with the newly-developed nuclear reaction and alpha particle energy deposition calculation modules, we find that, if considering the plasma has an anisotropic temperature distribution, the fusion energy gain factor ($Q$) of MCF is significantly modified, where both the deuteron-triton nuclear reactivity and the alpha particle energy deposition fraction are heavily influenced. The simulation results show that, under the International Thermonuclear Experimental Reactor (ITER) condition, if the plasma temperature anisotropy ratio can reach 0.1, i.e., the plasma perpendicular temperature component is one-tenth of its parallel component corresponding to the ambient magnetic field direction, the $Q$-value of ITER can be increased from the originally-designed 5 to about 10, with doubled enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.