Feed intake and its daily pattern are regulated both at a short and a long term by several control pathways, including energy balance regulation. This trial aimed to determine the effect of dietary fibre (DB) (mix of wheat, soy and sugar beet pulp fibres) and aleurone supplementation and their interaction on energy and nitrogen balances in growing pigs with ad libitum access to feed. Forty pigs (BW: 35 kg) were fed diets differing by fibre concentration (NDF concentration: 10% or 14% DM) and aleurone supplementation (0, 2 or 4 g/kg) during 3 weeks. Pigs were housed individually in a respiration chamber during the last week to record feeding behaviour and measure energy and nitrogen balances (n = 36). Glucose oxidation was studied on the 6th day with an injection of [U-13C] glucose and measurement of 13CO2 production. There was no significant interaction between DB inclusion and aleurone supplementation on any variables characterizing feeding behaviour. Pigs had less but longer meals with high level of DB, with an increased interval between two meals without effect on daily feed intake. The meal frequency significantly decreased when aleurone supplementation increased. Total tract apparent digestibility coefficient of DM, organic matter, ash, nitrogen and gross energy decreased when pigs received high DB level. Dietary fibre level increased significantly faecal excreted nitrogen. Aleurone supplementation decreased nitrogen retention. Free access to the feed induced a great individual variability not only in feed intake level (from 784 to 2290 g/day) but also in feeding behaviour (from 5.5 to 21.5 meals per day). This variability can be linked with the importance of underlying feed intake regulation pathways and difference in energy balance and metabolism efficiency. Several profiles of metabolism efficiency can be discriminate, thanks to a clustering based on feeding behaviour and pre-prandial concentrations of metabolites and hormones. In conclusion, DB inclusion decreased meal frequency, increased average meal size, decreased total tract apparent faecal digestibility coefficient of nitrogen and gross energy. Supplementation of aleurone decreased average daily feed intake with a reduction of the meal number per day, without modification of average meal size. Aleurone supplementation decreased nitrogen retention and nutrient deposition. Independently of experimental diets, the high individual variability permitted discriminating different profiles with different metabolic strategies. Efficient pigs with a high energy retention as protein and lipid seem to be able to adapt their metabolism according to energy sources.
Variations in feeding behaviour between animals result from individual variations in their metabolism as affected by diet composition. The study aimed to link the within-day dynamics of voluntary feed intake and those of blood metabolites and insulin in growing pigs havingad libitumaccess to feed and receiving diets differing in dietary fibre levels and aleurone supplementation. A total of forty pigs (body weight: 35 kg) had access to diets providedad libitum, which differed by fibre content (13 or 18 % neutral-detergent fibre) and aleurone supplementation (0, 2 or 4 g/kg). Feeding behaviour was individually recorded for 1 week. The kinetic of plasma metabolites and insulin was followed for 1 h after a voluntary test meal. Dietary fibre level did not affect the daily feed intake but increased meal size and meal duration. Aleurone supplementation (4 g/kg) decreased the daily feed intake and number of meals. Dietary fibre level only decreased insulin concentration measured 15 min after meal beginning. Aleurone supplementation (4 g/kg) decreased glycaemia in the first hour after the meal and insulinaemia 15 min after the meal. Free access to feed led to high variability in pre-prandial metabolites and insulin concentrations, resulting in different test meal size irrespective of diet composition. Animals were then spread over different profiles combining feeding behaviour and fasted status to explain different profiles of regulation of feed intake. Plasma metabolites and insulin kinetics were affected by diet composition but also by animal characteristics. Individual variability should be considered when diet composition is used to modulate feeding behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.