Principal Component Analysis (PCA) is a well-established technique in image processing and pattern recognition. Incremental PCA and robust PCA are two interesting problems with numerous potential applications. However, these two issues have only been separately addressed in the previous studies. In this paper, we present a novel algorithm for incremental and robust PCA by seamlessly integrating the two issues together. The proposed algorithm has the advantages of both incremental PCA and robust PCA. Moreover, unlike most M-estimation based robust algorithms, it is computational efficient. Experimental results on dynamic background modelling are provided to show the performance of the algorithm with a comparison to the conventional batch-mode and non-robust algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.