Characterization of a IV-VI semiconductor structure consisting of a PbSe/PbSrSe multiple quantum well (MQW) active region between distributed Bragg reflectors grown by molecular beam epitaxy on a Si(111) substrate is described. Pulsed photoluminescence (PL) spectra exhibited interband electronic transition energies ranging linearly with temperature from 231.4 meV at 150 K to 299.4 meV at 300 K, while continuous wave (cw) PL spectra exhibited only the vertical optical cavity mode with emission varying between 299.2 meV at 150 K to 301.1 meV at 300 K. A maximum PL emission power of approximately 1.8 mW was obtained for cw diode laser pumping when the heat sink temperature was 200 K. Data are consistent with a localized epilayer heating effect of about 100 deg where the interband electronic transition energy is coincident with the vertical optical cavity mode. In spite of significant sample heating and associated thermal expansion mismatch stress, cw PL emission intensity was stable with no noticeable degradation in intensity after repeated measurements. These results show that IV-VI epitaxial layers on silicon are viable materials for fabricating reliable light emitters for on-chip optical interconnects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.