Electronic inhomogeneity appears to be an inherent characteristic of the enigmatic cuprate superconductors. Here we report the observation of charge-density-wave correlations in the model cuprate superconductor HgBa2CuO(4+δ) (T(c)=72 K) via bulk Cu L3-edge-resonant X-ray scattering. At the measured hole-doping level, both the short-range charge modulations and Fermi-liquid transport appear below the same temperature of about 200 K. Our result points to a unifying picture in which these two phenomena are preceded at the higher pseudogap temperature by q=0 magnetic order and the build-up of significant dynamic antiferromagnetic correlations. The magnitude of the charge modulation wave vector is consistent with the size of the electron pocket implied by quantum oscillation and Hall effect measurements for HgBa2CuO(4+δ) and with corresponding results for YBa2Cu3O(6+δ), which indicates that charge-density-wave correlations are universally responsible for the low-temperature quantum oscillation phenomenon.
The properties of quantum materials are commonly tuned using experimental variables such as pressure, magnetic field and doping. Here we explore a different approach: irreversible, plastic deformation of single crystals. We show for the archetypal unconventional superconductor SrTiO3 that compressive plastic deformation induces lowdimensional superconductivity significantly above the superconducting transition temperature (Tc) of undeformed samples. We furthermore present evidence for unusual normal-state transport behaviour that suggests superconducting correlations at temperatures two orders of magnitude above the bulk Tc. The superconductivity enhancement is correlated with the appearance of structural features related to selforganized dislocation structures, as revealed by diffuse neutron and X-ray scattering.These results suggest that deformed SrTiO3 is a potential high-temperature superconductor, and push the limits of superconductivity in this low-density electronic system. More broadly, we demonstrate the promise of plastic deformation and dislocation engineering as tools to manipulate electronic properties of quantum materials.
The inheritance and expression patterns of the cry1Ab gene were studied in the progenies derived from different Bt ( Bacillus thuringiensis) transgenic japonica rice lines under field conditions. Both Mendelian and distorted segregation ratios were observed in some selfed and crossed F(2) populations. Crosses between japonica intra-subspecies had no significant effect on the segregation ratios of the cry1Ab gene, but crossing between japonica and indicainter-subspecies led to distorted segregation of the cry1Ab gene in the F(2)population. Field-release experiments indicated that the cry1Ab gene was stably transmitted in an intact manner via successive sexual generations, and the concentration of the Cry1Ab protein was kept quantitatively stable up to the R(6)generation. The cry1Ab gene, driven by the maize ubiquitinpromoter, displayed certain kinds of spatial and temporal expression patterns under field conditions. The content of the Cry1Ab protein varied in different tissues of the main stems, the primary tillers and the secondary tillers. Higher levels of the Cry1Ab protein were found in the stems, leaves and leaf sheaths than in the roots, while the lowest level was detected in grains at the maturation stage. The content of the Cry1Ab protein in the leaves peaked at the booting stage and was lowest at the heading stage. Furthermore, the Cry1Ab content of cry1Ab expression in different tissues of transgenic rice varied individually with temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.